

HEAT AND POWER FOR BIRMINGHAM

Closedown Dissemination Event 12th July 2017

Welcome and Introduction

Roger Hey Future Networks Manager

Housekeeping

Generation Across WPD's Network

Innovation Programme

Ofgem Report 2015-2016

WESTERN POWER

Contents 🜔

DSO Transition Programme

Innovation - Objectives

The objectives of WPD's innovation programme are to:

- Develop new *smart* techniques that will accommodate increased load, storage and generation (Distributed Energy Resources – DER) at lower costs than conventional reinforcement;
- Facilitate energy and capacity markets; including local flexibility services
- Improve performance against one or more of our core goals of safety, customer service, reliability, the environment or cost effectiveness;
- Ensure solutions are compatible with the existing network;
- Deliver solutions so that they become business as usual; and
- Provide long term, whole system outcomes and value for money for consumers.

DSO Transition Programme

Assets

Investment in technology to ensure networks operate at high performance levels

Roll out of Active Network Management across entire network by 2021, with expanded connections options available for customers allowing them to get quicker and cheaper access to the network.

Telecommunications readiness and strategic investment in fibre networks will deliver more visibility and controllability

Customers

Propositions for DSR services will be developed for specific customer group, prioritised in regions and customer segments as the need arises

Creation of a localised visibility platform that will demonstrate where there is congestion or capacity on the network, informing localised tariffs and supporting the development of a Local Energy Market

Alternative connection products will be extended to all WPD areas and extended to include demand and storage connections

Network operations

Invest in technology to give us unprecedented visibility and monitoring of the network Use complex data analytic tools to forecast requirements and ensure the network is proactively managed

Upgrade business areas to facilitate flexibility services such as demand side response

Continue work to develop and update regional energy scenarios that will establish future network needs and inform strategic investment in the network

Agenda	
09.30 – 10.00	Arrival and Refreshments
10.00 – 10.15	Welcome and Introduction
10.15 - 10.45	Project Overview and Original Aims
10.45 - 11.15	Enhanced Fault Level Assessment
11.15 - 11.30	Refreshments
11.30 - 12.15	Fault Level Monitors – Design and Implementation
12.15 - 13.15	Lunch
13.15 - 14.00	Fault Current Limiters – Design and Implementation
14.00 - 14.30	Customer Benefits – Connections and Security
14.30 - 14.45	Refreshments
14.45 – 15.15	Alternative Connections
15.15 - 15.30	Next Steps and Close

HEAT AND POWER FOR BIRMINGHAM

Closedown Dissemination Event 12th July 2017

Project Introduction, Aims and Objectives

Jonathan Berry

Technical Definition

A short circuit (fault level) is an electrical circuit that allows a current to travel along an unintended path with no or very low electrical impedance.

Examples of unintentional conducting paths in a 3-phase system (faults)

What actually causes faults on the system?

What actually causes faults on the system?

What actually causes faults on the system?

What effects it and how does it change?

What dominates the distribution fault level?

What dominates the distribution fault level?

What dominates the distribution fault level?

How is it generated and changed?

V = IR

How is it generated and changed?

V = IZZ = R + X

How is it generated and changed?

How is it generated and changed?

How is it generated and changed?

$\frac{V}{ZI} = -\frac{Z}{Z}$

How is it going to (likely to) change?

How is it going to (likely to) change?

Average Combined Heat and Power Fault Level Infeed – **4.5MVA/MVA**

Average Inverter Fed Generator Infeed – **1.2MVA**

Even if the Power Station was equivalent to a CHP unit a 2000MW station would have an infeed value of **9000MVA**

If all that power was generated by inverter fed distributed generation the fault level infeed would be reduced by **6600MVA** to **2400MVA**

How is it going to (likely to) change?

National Grid's projection of fault level reduction from 2015 to 2025

What does this mean?

Short Term

Centralised Generation and Distributed Generation

What does this mean?

Medium Term

Reduced Centralised Generation and Increased Distributed Generation

What does this mean?

Long Term

Minimal Centralised Generation and Dominated Distribution Generation

What does this ACTUALLY mean?

Distribution Networks of the Future

FlexDGrid Project?

What are we doing?

Understanding, Managing and Reducing the Fault Level on an electricity network

Why are we doing it?

Facilitating the early and cost effective integration of Low Carbon generation

Why are we doing it now?

Supporting the Carbon Plan – Connection of generation to the grid and development of heat networks – reducing carbon emissions

What is FlexDGrid?

Three integrated Methods leading to quicker and cost effective customer connections through a timely step change in the enhanced understanding, management and mitigation of distribution network Fault Level.

Each Method can be applied on its own whilst the integration of the three Methods combined will provide a system level solution to facilitate the connection of additional Generation.

FlexDGrid Effect on Fault Level

.

Fault Level Heat Maps

Thank you for listening

Any questions?

HEAT AND POWER FOR BIRMINGHAM

Closedown Dissemination Event 12th July 2017

Enhanced Fault Level Assessment

Ali Kazerooni

FlexDGrid – Method Alpha

Three integrated Methods leading to quicker and cost effective HV customer connections through a timely step change in the enhanced understanding, management and mitigation of distribution network fault level

Introduction

- Methodology to develop the computer model of 11kV networks
- Fault level assessment sensitivity analysis and review internal policy documents;
- Tools and methodologies for an enhanced fault level calculations
- Tools and computer models for assessing the impact of FCLs on network fault levels

Developing computer models - Methodology

Select the power system analysis software PSS®E 32	Identify appropriate/updated databases	Develop conversation algorithm and tools	Integration into existing EHV model
•EHV (132, 66kV) model was available •ER G74 script was already developed	 Network connectivity's Conductor types Demand Generation 	 A tool and methodolog can be used for other parts of network Easy to use and accessible to everyone 	 Integrated model from grid supplied points to secondary substations Interconnection between primary substations through 11 kV network

Developing Computer Models - Methodology

EMU

PSS/E

Developing Computer Models - Methodology

Developing Computer Models – Conversion Tool

2				Topology_EMU	J_to_PSSE (fin	al) (2).xlsm [I	Read-O	nly] - Micro	osoft Excel								-	•	x
9	Home Insert Pa	ge Layout Formulas	Data Review	View Developer	PDF-XChar	nge 2012											Ø) - 6	X
Pa			<u>∆</u> • ■ ■ #	Wrap Text			* *00 *-0	Conditiona Formatting	I Format • as Table • Styles	Cell Styles *	Insert	Delete Forn	at 🛃	Clear -	Sort & F Filter * S				
	M20 - 🕤	fx																	*
	A B C	D E	F G	н	J	K L	N	N	O P	Q	R	S	T	ι	J	V	W	Х	-
1 2 3 4	Browse	UG Cable file:	H:\VBA\Hall Green\6	70028_UgCable.xlsx	× 1			To up	load data			Choose file been chose	100000000000000000000000000000000000000		252				Î
5	Browse	Transformers file:	H:\VBA\Hall Green\&	70028_Transformer.xls	×				to copy di				n, enek a	(ep 1. 108	0				
7	Browse	Internal file:	H:\VBA\Hall Green\6	70028_internal.xlsx															
9 10	Browse	OH Line file:	H:\VBA\Hall Green\6	70028_OhLine.xlsx					p 3: Data (ge 1 of 3	Conversion	- Progre	\$\$			0 Dura	ition: Up	to 1-2 ha	urs*	
11 12	Browse Breaker file: H:\VBA\Hall Green\670028_Breaker.xlsx				Stage 2 of 3 Duration: Up to 10 minutes Stage 3 of 3 Duration: Up to 5 minutes														
13	Start numbering buses at:	27000		Auto-match unknown s	ized cable					-					*Dep	endent o	n amour	nt of da	ta
14 15 16 17	OUTPUT Comment line 1: Comment line 2:	Export trial from sam	iple data																
17 Comment line 2: 18 19 20 Step 1: Load Data 21 Step 2: Enter Buses Step 3: Convert Data Step 4: Export data																			
 22 23 Tool description: 24 This tool produces a raw file compatible with PSS/E, constructed from data obtained from EMU. This data 25 describes the underground cables, overhead lines, internal connections, transformers and breakers for 11 kV 26 networks. 27 The steps involved in this conversion of data are: 28 1) Relevant data are extracted from the relevant sheets imported into this tool 26 networks. 27 The stop involved in the relevant sheets imported into this tool 27 The tool has the option to automatically change material codes with unknown sizes. To turn this feature 										*									
14 4	→ → Title / QA / Key L dy 🎦														9		Ū		•

Developing Computer Models – Integration into EHV Model

Developing Computer Models - Outcomes

- **15** primary substations
- **3,041** secondary substations
- and 1,878 km HV circuits

Reduced time of modelling and human error

Enhanced EHV fault contribution calculation

Enhanced HV networks model granularity

Fault Level Analysis Tools

Fault Level Guidance Tools

Fault level estimation	<mark>- Generatio</mark>	on Connectio	n	
Chester Street			Base U	nits
VENTNOR AVE.	724142		Base power [MVA]	100
11			Base voltage [k¥]	11
			Base current [kA]	5.25
	Make [kA]	Break [kA]	Base impedance [Ohm]	1.21
@ Chester Street	32.8	11.4		
@ VENTNOR AVE.	33.4	13.1	Generation connection	@ VENTNOR AVE.
	Maka (köl	Drock (kå)		
@ Chaster Street				T
e rennomme.	20.10	10.11		\frown
	R [ohm]	X [ohm]		\sim
R AVE. to CHESTER STREET primar		0.118	Chester Street Primary Sul	ostation 😣
				\cup
			Make Eault Jours (16.61-	22.55
			Break fault level [kA]=	8.51
Generator rating [MVA]	3	3.0		
	0.	.22		
Sub-transient reactance [ohm]	1	7.7		
	Make [kA]	Break [kA]		
@ Chester Street	1.15	0.71		
@ VENTNOR AVE.	1.17	0.83		
			VENTNOR AVE. 3 MVA	
	Make [kA]			(G)
				\sim
	2167	11.26		
@ VENTNOR AVE.	21.07	11.20		
Name	21.07	11.20	Email the resu	14- († - 40
	Chester Street VENTNOR AVE. 11 © Chester Street © VENTNOR AVE. © Chester Street © VENTNOR AVE. Chester Street © VENTNOR AVE. Chester Street © Chester Street © Chester Street © Chester Street	Chester Street VENTNOR AVE. 72 11 Chester Street 72 © Chester Street 32.8 © VENTNOR AVE. 33.4 Chester Street 21.4 © Chester Street 21.4 © Chester Street 21.4 © VENTNOR AVE. 20.49 Chester Street 21.4 © Chester Street 21.5 © Chester Street 11.5 © Chester Street 11.7 © Chester Street 11.7 © Chester Street 11.7 © Chester Street 11.7 © Chester Street 22.55	Chester Street VENTNOR AVE. 11 Wake [kA] Break [kA] © Chester Street © VENTNOR AVE. Chester Street © Chester Street © Chester Street © Chester Street © VENTNOR AVE. Break [kA] © Chester Street © VENTNOR AVE. Break [kA] © Chester Street © Chester rating [MYA] Transient reactance [p.u] Sub-transient reactance [p.u] Transient reactance [p.u] Sub-transient reactance [p.u] Chester Street © Chester Street	VENTNOR AVE. 724142 Base power [MVA] 11

Fault Level Calculation Sensitivity Analysis

Fault Level Calculation Sensitivity Analysis

Fault Level Sensitivity Analysis – Generation PF

Fault Level Calculation Policy Document

Enhanced fault level assessments

- A test bed for model validation through fault level monitoring
- Models and tools for FCL impact desktop studies

Fault level management Fault level mitigation

FCL Modelling - Challenges

- PSCFCL , RSFCL are now live assets and need to be considered in fault level assessment
- Detailed parameters of the device were not provided by the manufacturers due to confidentiality issues;
- Transient models could not be constructed using conventional power system analysis tools; and
- Detailed technical knowledge for transient modelling and analysis of the device was required.

FCL Modelling - Transient Behaviour

FCL Modelling – Static Modelling

A fit-for-purpose computer model for FCLs may only include their behaviour at specific snapshots of the fault period e.g. Making and Breaking fault times

Stage I – Obtain device specific impedance data and create impedance look-up tables for prospective Make and Break fault currents.

Stage II – Deploy the FCL impedance estimator in static shortcircuit calculations.

Impedance at Breaking Time (70ms) - PSCFCL

Impedance at Breaking Time (70ms) - RSFCL

FCL Impedance Estimator

FCL Modelling - Methodology

Thank you for listening

Any questions?

HEAT AND POWER FOR BIRMINGHAM

Closedown Dissemination Event 12th July 2017

Fault Level Measurement

- Design and Implementation

Neil Murdoch

Introduction

- Overview of Method Beta
- FLM Integration Options
- Site Selection Process
- FLM Technology
- Site Installation

FlexDGrid – Method Beta

Method Beta Overview

Aim of method Beta:

Installation of Fault Level Measurement Technology to determine the actual real time substation Fault Level.

- Build on knowledge learned through previous projects
- Install FLM technology in 10 substations
- Use knowledge captured to update WPD modelling policies
- Develop control procedures based on customer Fault Level Contribution

Site Selection

- 18 substations identified in and around Birmingham with FL issue
- 10 sites for FLM, selection based on:
 - Availability of Space
 - Network Connection
 - Substation Access
 - Investment Plans
 - Auxiliary Equipment

Selected Sites

Substation	
Castle Bromwich 132/11kV	Hall Green 132/11kV
Chester Street 132/11kV	Elmdon 132/11kV
Bournville 132/11kV	Chad Valley 132/11kV
Kitts Green 132/11kV	Shirley 132/11kV
Bartley Green 132/11kV	Nechells West 132/11kV

FLM Technology

Partnership led by S&C Electric supported by Outram Research, Nortech and HVR Resistors.

S&C ELECTRIC COMPANY

Excellence Through Innovation

Active Fault Level Monitor

- Originally developed as part of the Teir 1 LCNF Project "active Fault Level Monitor"
- Device comprises
 - S&C Electric IntelliRupter
 - Outram Research PM7000
 - Nortech Envoy
 - HVR Resistor Bank

S&C IntelliRupter PulseRecloser

Operation

- Device originally designed to test a three phase network before a permanent re-close.
- Application modified to close a phase and then pulse another phase placing a 4ms phase to phase fault on the 11kV network.
- Operation occurs at 100ms apart on the peak and trough of the fully closed phase current wave

Outram Research PM7000

Operation

- Monitors Voltage and Current flows through AFLM and substation transformers.
- Measures disturbance on waveforms caused by general switching and by AFLM to determine the substation fault level
- Can distinguish between upstream contribution through primary transformer and contribution from the 11kV network
- Also used to monitor network circulating current to determine if a parallel is made between two transformers

Dual Path PM7000 AFLM Waveform

• Central controller for AFLM operation

- Collects and transmits the real time data back to WPD control
- Programmed to operate device at pre defined interval or ondemand through WPD Network Management System

Single Line Diagram of AFLM

Testing – Chicago May 2015

- Testing carried out in S&C's High Voltage Laboratory
- Aim to prove accuracy of device is within 5% under a variety of network conditions

Testing Results

Test #	Lab Trace ID	Peak I (10ms) error (%)	RMS I (90ms) error (%)
4	90	4.4%	-2.3%
3	92	1.9%	-2.8%
4	93	2.1%	-4.6%
3	95	4.6%	-2.8%
4	96	-2.5%	-8.6%
4	100	3.9%	-8.2%
3	102	2.1%	-4.4%
		2.4%	-4.8%
8	107	3.4%	-0.9%
9	108	6.9%	-2.8%
8	110	3.4%	-1.8%
8	118	2.4%	-4.8%
9	119	-3.8%	-8.7%
8	121	4.9%	-1.9%
9	122	-1.1%	-5.7%
8	124	5.2%	-0.8%
9	125	-1.1%	-6.6%
		2.2%	-3.8%
13	130	0.6%	0.0%
14	131	12.1%	3.6%
13	133	1.6%	-0.9%
14	134	10.8%	-2.3%
13	136	1.5%	-0.9%
14	137	3.4%	-2.6%
14	140	2.6%	-2.6%
13	142	3.5%	-1.1%
14	143	3.7%	-0.6%
		4.2 %	-0.8%

- Average accuracy across all tests within 5%
- 50Ω resistance gave poor results due to smaller disturbance
- Red values outside accuracy. Caused by rapid frequency drop unique to laboratory and not a feature of real network

Commissioning Dates

Substation	Commissioning Date
Elmdon 132/11kV	22/10/2014
Chad Valley 132/11kV	02/12/2014
Castle Bromwich 132/11kV	12/02/2015
Kitts Green 132/11kV	04/03/2015
Shirley 132/11kV	04/03/2015
Hall Green 132/11kV	01/04/2015
Nechells West 132/11kV	29/07/2015
Chester Street 132/11kV	13/08/2015
Bartley Green 132/11kV	03/09/2015
Bournville 132/11kV	28/10/2015

Example Connections

Installation Pictures

Installation Pictures

Data Captured

- Using 12 months of fault level data from AFLMs
- 95th percentile fault level was calculated for each AFLM
 - Provides a conservative value for maximum fault level
- Comparison made to design fault level and existing modelled fault level
- % available headroom calculated at each substation based on AFLM result

Data Graphs

Chad Valley Make Fault Level

- Red line is existing modelled Fault level
- Green line is average of all AFLM results and the blue line is the 95th percentile value

Data Graphs

Kitts Green Make Fault Level

Overall Results – Make Fault Level Change

	Current Headroom /%	FLM Headroom / %	% Change
Bartley Green	35.0%	36.2%	1.2%
Bournville	25.7%	28.7%	3.0%
Castle Bromwich	15.3%	15.3%	0.0%
Chad Valley	22.8%	30.8%	8.1%
Chester Street	35.9%	34.7%	-1.2%
Elmdon	44.9%	35.3%	-9.6%
Hall Green	32.3%	35.0%	2.7%
Kitts Green	26.0%	3.6%	-22.5%
Nechells West	-4.2%	-10.8%	-6.6%
Shirley	47.3%	43.4%	-3.9%

Overall Results – Break Fault Level Change

	Current Headroom /%	FLM Headroom / %	% Change
Bartley Green	42.0%	35.9%	-6.1%
Bournville	33.6%	33.6%	0.0%
Castle Bromwich	24.4%	13.0%	-11.5%
Chad Valley	31.3%	28.2%	-3.1%
Chester Street	39.7%	23.7%	-16.0%
Elmdon	50.4%	40.5%	-9.9%
Hall Green	38.9%	35.1%	-3.8%
Kitts Green	35.1%	4.6%	-30.5%
Nechells West	11.5%	-2.3%	-13.7%
Shirley	52.7%	26.7%	-26.0%

MVA/MVA Analysis

- Project aim to challenge load infeed assumptions for fault level calculations defined by G74
- Use advanced models combined with AFLM data to determine fault contribution from 11kV network
- Combined with substation load information to generate template for application of learning to substations outside project

MVA/MVA Template

MVA per MVA Infeed based on Percentage of Domestic Demand

Proposed MVA/MVA Infeed Values

Load	G74 MVA per MVA Infeed
Majority Domestic	1.0
Split Domestic/Industrial	3.0
Majority Commercial	3.0
Majority Industrial	5.0

- Industrial substations showing values above 5.0 MVA/MVA.
 Decided to limit contribution to 5.0 as per typical contribution from synchronous generation
- Domestic dominated substations remain around 1.0 MVA/MVA contribution
- Commercial and substations with 50/50 split recommended 3.0 MVA/MVA

Lessons

- FlexDGrid has shown that 1.0 MVA/MVA general load fault infeed value at 11kV is no longer valid at all substations
- Further analysis at a wider range of substations required to come to a definitive conclusion
 - Further development of FLM required to enable easier installation
 - Reduction of ±5% accuracy of device

Thank you for listening

Any questions?

Lunch

Resume at 13.15pm

HEAT AND POWER FOR BIRMINGHAM

Closedown Dissemination Event 12th July 2017

Fault Current Limiters

- Design and Implementation

Neil Murdoch

Introduction

- Overview
- Fault Level Issues
- Traditional Reduction Solutions
- Fault Current Limiters
 - Technologies
 - Connection Options
 - Specification
 - Design/Testing/Install

FlexDGrid – Method Gamma

Overview

- Method Gamma aimed to trial three different Fault Current Limiter (FCL) technologies
- FCLs have now been connected at three 132/11kV substations in Birmingham
- The connection of the FCLs has released 52MVA of generation capacity on the 11kV network

Fault Level Issue

- Substation with two 30MVA transformers in parallel
- LV switchgear is rated at 250MVA
- Maximum Fault Level (Break) is 240MVA
- Only 10MVA spare Fault Level capacity for generation

Fault Level Issue

- New 5MVA CHP generator wishes to connect
- System study reveals that Fault Level is now above rating
- An option is required to reduce the Fault Level

Traditional Fault Level Reduction – Option 1

Open Bus-Section

 Simplest method is to open the bus-section and split the path

C	

Significant reduction in Fault Level

Reduces security of supply (Increase in Customer Interruptions)

Traditional Fault Level Reduction – Option 2

Reactor

 Installation of reactors in the bus-section or incoming feeders

Moderate reduction in Fault Level

High losses, static impedance

Reactors in series with transformers

Reactor across bus-section

FlexDGrid - Fault Current Limiters

- FlexDGrid aimed to overcome the limitation of traditional methods of fault level mitigation
- The process below was followed for trialing technologies

FCL Technologies

- Build on knowledge learned through IFI, ETI and LCNF Projects
- Install 5 FL mitigation technologies in 5 separate WPD substations
- Test & trial emerging technologies to quantify performance and network benefits

FCL Technologies

GridON – Pre-Saturated Core FCL

Nexans – Resistive Superconducting FCL

GE/Alstom – Power Electronic FCL

- The Pre-Saturated Core FCL (PSCFCL) acts like a "smart reactor"
- Comprises both AC and <u>DC</u> windings
 - The DC winding adjusts to keep the impedance of the PSCFCL low under normal conditions
 - When a fault occurs on the AC network the automatically changes to a present a higher impedance

THE TRANSFORMER PEOPLE

- Power Rating: 38MVA (2000A)
- Fault level reduction: 44%
- Impedance:
 - 0.18 p.u. (normal)
 - 1.0 p.u. (fault limiting)
- Mass: 170 Tonnes

• Dimensions (LxWxH): 6.4 x 4.5 x 5.3 m

- The Resistive Superconducting FCL exploits the properties of a High Temperature Superconductor (HTS)
- HTS is assembled within a cryostat and kept at very low temperature (72K = -201°C) by using liquid nitrogen
- Normally the RSFCL presents very low impedance to the network
- The HTS becomes hot during faults resulting in a high impedance

Mexans.

- At low current the RSFCL operates in the superconducting range of the HTS
- As current increases so does the temperature of the HTS
- At the critical current (I_c) the HTS operates outside the superconducting range and "quenches"
- This causes the impedance of the RSFCL to dramatically increase

- When the RSFCL quenches, the temperature of the HTS increases
- To prevent damage to the HTS, the RSFCL has to disconnect

- Power Rating: 30MVA (1600A)
- Fault level reduction: 50%
- Impedance:
 - 0 p.u. (normal)
 - 2.18 p.u. (fault limiting)
- Mass: 30 Tonnes

• Dimensions (LxWxH): 8.1 x 4.6 x 3.2 m

FCL Technologies – Power Electronic FCL

- GE proposed an FCL that could rapidly "switch" fault current instead of limiting it
- The device was based upon power electronic IGBTs already used in their VSC demonstrator project (ex-Alstom Grid)
- The PEFCL was designed to "sense" fault current and disconnect before the first peak of fault current

FCL Technologies – Power Electronic FCL

- Unfortunately, due to issues with the design integrity of the PEFCL it was not able to be completed in time for the end of the project
- However, knowledge from the project has been shared with other DNOs (including UKPN – PowerFul-CB)

- There a number of options for connecting FCLs
- Options may differ depending on:
 - Network configuration
 - FCL operation
 - Balance of load

- Three integration options for FCLs:
 - In series with a transformer
 - Across a bus-section
 - Within an interconnector

In-series with transformer

- Parallel of T1 and T2
- Transformer protection has to be modified
- FCL has to "ride-through faults"

Across Bus-Section

- Parallel of T1 and T2
- Requires spare CBs either side of Bus-Section
- Can disconnect after fault without disturbing incoming supplies

Within an Interconnector

- Parallel of T1 and T3
- Existing protection can be modified

 Can disconnect after fault without disturbing incoming supplies

Substation Selection

- 18 substations identified in and around Birmingham with FL issue
- 5 sites for FCL selected:
 - Availability of Space
 - Network Connection
 - Substation Access
 - Investment Plans
 - Auxiliary Equipment

Substation Selection

Substation Selection

• Following thorough analysis the following substations were chosen for installation of an FCL

Substation	Comments	
Castle Bromwich 132/11kV	2 no. dual wound 60MVA transformers	
Chester Street 132/11kV	3 no. 30MVA transformers	
Bournville 132/11kV	4 no. 30MVA transformers	
Kitts Green 132/11kV	3 no. dual wound 60MVA transformers	
Bartley Green 132/11kV	2 no. 30MVA transformers	

Specification – FL Reduction

- The required FL reduction at the chosen substations was based on the Firm Capacity
- Substations with a higher firm capacity had higher levels of reduction

Specification – FCL Requirements

• The following factors were considered when selecting FCLs

FCL Installations

• The FCLs were allocated to the substations according to the aspects of each technology

Substation	Technology	Manufacturer
Castle Bromwich 132/11kV	Pre-Saturated Core FCL	GridON
Chester Street 132/11kV	Resistive Superconducting FCL	Nexans
Bournville 132/11kV	Resistive Superconducting FCL	Nexans
Kitts Green 132/11kV	Power Electronic FCL	GE
Bartley Green 132/11kV	Power Electronic FCL	GE

Castle Bromwich FCL Installation

- FCL was designed to be installed in the leg of GT1A
- Indoor installation with extensive modifications

Castle Bromwich FCL Installation

Chester Street FCL Installation

- Three Grid Transformers run in split configuration
- GT1 supplied from a separate source
- RSFCL connected across the bus-section (new switchgear)

Chester Street FCL Installation

Bournville FCL Installation

- Four Grid Transformers run in split configuration
- 1960's 11kV switchgear interconnected using cables
- RSFCL connected across an 11kV interconnector

Bournville FCL Installation

Operation of FCLs

- FCLs have been successfully connected to the system
- Unfortunately no faults have occurred to verify site performance!
- As with most new technologies some issues have arisen during operation

Operation of FCLs

GridON

 Problems with DC sensing circuit. Circuit re-designed and trouble free since December 2015

Nexans

 Problems with cooling plant failures. Manufacturer has repaired. Investigating alternative cooling solution

Learning – GridON FCL

Changes in Design

The initial design from GridON agreed during contract:

- 5.4x4.2x5.0m (LxWxH)
- 161 Tonnes

During the detailed design phase the device footprint and weight increased to:

- 6.4x4.6x5.4m (LxWxH)
- 168 Tonnes

An extra 20% allowance had been made during WPD design

Learning – GridON FCL

Magnetic Shield

Contract stated that magnetic field outside of the enclosure had to be kept below 5mT

- Design produced required further structural calculations
- Installation of one shield wall after FCL installation
- Shield had to be covered to protect sharp edges

<u>Carefully consider installation of shield in</u> <u>overall design</u>

Learning – GridON FCL

Short circuit testing

Witnessing of short circuit testing revealed issues with high magnetic field during faults:

- Operation of buchholz relay
- Alarm from de-hydrating breather
- Alarm from Calisto Gas Monitor

These issues were rectified before final testing so that the performance onsite was not affected

Learning – Nexans

Enclosure

Advantages

- Majority of components pre-installed
- Control system wiring pre-installed
- Easier for testing
- Less pipework

Disadvantages

- Significant additional weight (approx. 29t)
- Logistics to transport and offload

Conclusion

- Minimal improvements required to the design
- Larger enclosure to allow better access for cable termination
- Preferred solution to the alternative of installing the device in an existing building, provided that there is sufficient space in the substation compound

Learning – Nexans

Cooling System

Issues

- Damaged pipework during commissioning
- Water level dropping below the trip level
- Air intake becoming clogged with debris leading to inadequate air flow
- Minor helium leak due to loose connections
- Water leak at the connection
- Power supply failures

A simpler approach to the cooling system, with less moving parts, could improve reliability

Learning – Nexans

Open Loop Cooling

- An open loop cooling system could overcome the issues with the problems encountered on the Nexans RSFCL.
- The following points need to be considered
 - Large reduction in moving parts
 - Space for storage tank
 - Tank provision and filling costs vs.
 maintenance and cooling system losses

- The design and installation of three FCLs on the 11kV network has produced the following benefits:
 - Released FL capacity
 - Increase network security
 - Developed existing technologies
 - Learning and outcomes shared with DNOs

Benefits – FL Capacity

Substation	Capacity Released
Castle Bromwich	13MVA
Chester Street	19MVA
Bournville	20MVA
TOTAL	52MVA

Thank you for listening

Any questions?

HEAT AND POWER FOR BIRMINGHAM

Closedown Dissemination Event 12th July 2017

Benefits – Connections and Security

Jonathan Berry

Enhanced Modelling:

- Further increases in modelling accuracy and consistency
 - Value to both new and existing connections
 - More accurate representation of network in all conditions
 - Consistency in system operating times
 - Increased utilisation of network assets

Company Directive

STANDARD TECHNIQUE: SD7F/2

Determination of Short Circuit Duty for Switchgear on the WPD Distribution System

Policy Summary

This document provides guidance on calculation of fault levels so as to determine the short-circuit duty for switchgear installed on the WPD distribution networks.

NOTE: The current version of this document is stored in the WPD Corporate Information Database. Any other copy in electronic or printed format may be out of date. Copyright © 2017 Western Power Distribution

- 1 of 14 -

ST:SD7F/2 May 2017

Figure 1 - Generator and Transformer Arrangement

Once calculations indicate switchgear is above 95% of its rating it should be considered overstressed, unless detailed studies can show otherwise to a value no greater than 98% at the discretion of the Primary System Design Team Manager.

The errors inherent in any methodology and software program used, together with variance in data accuracy and assumptions, should be taken into account when undertaking any specific detailed studies where initial analysis indicates switchgear above 95% of its rating.

Table 1 – Typical parameters of the generators							
Synchronous generators (11kV)							
	2 – 5MV	/A	5 – 20 MVA		20 – 60 MVA		
Armature Resistance [p.u]	0.0068		0.0075		0.0075		
Synchronous reactance [p.u]	1.8		2.0		2.0		
Transient reactance [p.u]	0.19		0.19		0.19		
Sub-transient reactance [p.u]	0.13		0.13		0.13		
Open circuit transient time	3			6		1	.0
Open circuit sub-transient time	0.04			0.06	0.06 0.07		07
S	ynchronous ge	enerator	s (0.4	15kV		•	
	100 500)		1	1.5	2
	kVA	kV/	λ	M	VA	MVA	MVA
Armature Resistance [p.u]	0.0077	0.00	95	0.0	095	0.0093	0.0074
Synchronous reactance [p.u]	2.05	2.5	3	2	54	2.49	1.96
Transient reactance [p.u]	0.17	0.1	3	0.	20	0.21	0.16
Sub-transient reactance [p.u]	0.12	0.0	9	0.	14	0.15	0.12
Open circuit transient time	0.34	1.5	5	2.	35	3.56	4.04
Open circuit sub-transient time	0.014	0.01	.7	0.0	036	0.042	0.04
Converter connected generators							
	Make Time Fault infeed [p.u] Break Time Fault infeed [p.		ifeed [p.u]				
Battery Storage	3.0		1.2				
PV System	3.0			1.2			
Micro CHP	3.0			1.2			
Wind Turbine / DFIGs		4.0				2.0	

Voltage Level (kV)	Breaking time (ms)
11kV	70
33kV	70
66kV	50
132kV	50

Real-time Fault Level Data:

- Make and Break data to validate and update network models
- Update how different loads are characterised on the system
- Increased data to inform potential network operability functionality
- Active control of customers

24th International Conference on Electricity Distribution

Glasgow, 12-15 June 2017 Paper 0976

CHARACTERISATION OF 11KV FAULT LEVEL CONTRIBUTIONS BASED ON SUBSTATION LOAD PROFILE

Paul EDWARDS WSP | Parsons Brinckerhoff - UK edwardsp@pbworld.com Jonathan BERRY Western Power Distribution - UK jberry@westernpower.co.uk

Load	G74 MVA per MVA Infeed
Majority Domestic	1.0
Split Domestic/Industrial	3.0
Majority Commercial	3.0
Majority Industrial	5.0

Fault Current Limiters:

- Considerable fault level
 headroom created
- Parallel network operation enabled
- Policies and Procedures created for technologies for future use

The DC bias for the FCL is generated by 5 separate DC power supplies which can provide p to a total of 500 A. The required DC bias at 30MVA is 365A and during an overload of 18MVA, 400 A of DC bias is required. The DC bias has to be controlled to sensure that the

not too high (too low DC bias)

reduced (too high DC bias)

- There are two otheles successful with the FCL. The AC otheles is the smaller otheles which hows the Srogmann Logic Controller (FLC). Hows Mohine interface (EM) mohine, subpr. FCL status measure, condition neutritor and smalling writing. The DC otheles contain the DC power supplies areas to create the DC bits for the FCL. The two clubeles are supplied from a segarate UFS system and battery located in the adjacent Fault Level Monitor sequences from
- 33 The FCL is equipped with on-board radiators and a single fan providing ONAF cooling. The cooling fan is controlled by the FLC which monitors the AC load current flowing through the FCL The fan is rothclad on when the current in the FCL encesds 1575A (30MVA). The fan switches off once the current drops below 1400A.
- 3.3.4 In addition to the standard devices found on a transformer, the FCL is also equipped with a Calisto Dissolved Gas Analysis (DGA) device and a regenerative breather.

- 7 of 19

Substation	Capacity Released
Castle Bromwich	13MVA
Chester Street	19MVA
Bournville	20MVA
TOTAL	52MVA

Thank you for listening

Any questions?

HEAT AND POWER FOR BIRMINGHAM

Closedown Dissemination Event 12th July 2017

Fault Level Monitors

Enhancing Alternative Connections

James Bennett

Presentation Overview

- Alternative Connections Background
- Comparison with Existing Offerings & Key Decision Points
- Soft-Intertrip ANM Development
- Final Key Points

Alternative Connections

- Developed as parts of the network became 'full'
- 'Full' = Limitations from Thermal, Voltage, Protection or Fault Level
- Customers must be willing to accept some level of curtailment in return for a saving in reinforcement costs and timescales
- Level of curtailment can be fixed or dynamic
- WPD currently has four options of increasing technicality

Alternative Connections

Alternative Connections

Alternative Connections – Export Limiting

- Measures Apparent Power at Exit Point
- Uses information to restrict the generation and/or balance the customer demand in order to prevent agreed ASC being exceeded
- Suitable for all capacities & voltage levels
- Reduces generators contribution to thermal or voltage infringements (Fault Level Restrictions may still apply)

Alternative Connections - Timed

- Achievable where we have predictable load and generation patterns
- Connections will be given an operating schedule which will define times and levels of capacity available
- Typical constraint times;

Period	10am to 4pm	4pm to 10am
October to March	No Constraint	No Constraint
April to September	30% of full output	No Constraint
May to August	0% of full output	No Constraint

- Method of curtailment provided by WPD or customer
- Suitable for sub 1MVA generation installs

Alternative Connections - Timed

20th to 27th March 2017

 \longrightarrow

Alternative Connections – Soft-Intertrip

- Network Constrained by a single upstream asset requiring reinforcement
- Through monitoring these conditions using the network management system, further capacity can be released when these limits or assets are within normal operating parameters
- On-site WPD RTU issues two stages of constraint 30% total output and 0% total output
- Suitable for all generator applications connecting at HV or with an export level of 250kW and above
- Limited participants per area
- Can monitor Transformer Reverse Power, (N-1) Constraints, Voltage Constraints, Thermal Constraints

Alternative Connections – Soft-Intertrip

20th to 27th March 2017

Alternative Connections – ANM

- 'Active Network Management'
- Multiple complex constraints affecting a number of customers
- Distributed control systems continually monitor all limits on the network then allocate the maximum capacity to customers in that area
- New ANM 'Zone' being rolled out every six months with a view to making the whole network available for customers to apply for an ANM connection by 2021

Alternative Connections – ANM

20th to 27th March 2017

Alternative Connections – FlexDGrid Fault Level

Aims

- Use the Fault Level Monitoring data to provide 'Quicker & Cheaper' connections for customers currently restricted by Fault Level constraints
- Ensure any solution is easy to roll-out to both customers and the business. Both commercially and operationally
- Trial with a customer

Alternative Connections – Comparisons to Existing

Limitations

- Constraints not seasonal or have any patterns
- Export can not be limited Must be totally disconnected
- Measurements not 'Real-Time' in the true sense
- No fall back protection operation

Strengths

Periods of potential curtailment known in advance

Alternative Connections – Comparisons

Fault Level – Potential Solution

ANM

- Ideal scenario
- Lack of true 'Real-Time' data makes conventional implementation not possible
- Costs associated with full ANM integration ruled it out as part of the project
- However, Fault Level Soft-Intertrip principals will need integrating in to ANM to cater for the possibility of both Fault Level and thermal constraints

Fault Level – Proposed Solution

Soft-Intertrip

- Simpler & Cheaper installation
- Existing Soft-Intertrip coding can be altered internally to include an operator in the loop for the final decision

Fault Level Soft-Intertrip - Development

Power-on Integration

- Routed FLM data in to the WPD corporate network
- Created FLM PoF interface
- Developed 'On-Demand' Intellirupter control

Generator End RTU

 Generator constraint panel already capable of opening and return status of G59 breaker. Settings amendments required.

Trial Customer

- Nechells West
- Existing on site Fault Current Limiter at the end of its useful working life. Two large CHP & One 800kVA Gas Generator
- Interested to understand the impact on their business
- Installed solution up to the generator to prove and provide visual indication

Trial Customer

• Off-Line calculations to establish thresholds

FLM Value (kA)	Mitigating Actions
≥12.705	No Acceptable Mitigating Actions Available
12.190 to 12.704	800kVA Gas Generator Disconnected 4.7MVA CHP Disconnected Bus-Section Z-Y Open
10.675 to 12.189	4.7MVA CHP Disconnected Bus-Section Z-Y Open
≤10.674	Bus-Section Z-Y Open

Trial Customer

Curtailment

Mitigating Action	Av. No. of Actions per Year	Average Length of Action (Minutes)		mes When be Required
800kVA Gas Generator Disconnected	1.16	2	0.20	2.30pm to
4.7MVA CHP	2.52	3	9.30am	4.30pm
Disconnected	2.52			

Costs

FLM Solution = £91k

Conventional = Approx. £300k & Three Years

Updated policies, offer letter, connection agreement and curtailment studies

Fault Level Soft-Intertrip – Final Key Points

 Two flavours of Fault-Level Soft-Intertrip available – with and without FLM infeed

Mitigating Action	Av. No. of Actions per Year	Average Length of Action (Minutes)		mes When be Required
800kVA Gas Generator Disconnected	4	2	0.20	2.30pm to
4.7MVA CHP	4	3	9.30am	4.30pm
Disconnected	4			

- Customer potentially saves an additional £66k by accepting a couple more curtailments a year. Depending on process criticality.
- Requirements to integrate with ANM solutions in the future for the scenarios where multiple constraints exist.
- Currently 56 similar size sites with the potential for similar Fault Level based savings.

Thank you for listening

Any questions?

HEAT AND POWER FOR BIRMINGHAM

Closedown Dissemination Event 12th July 2017

Next Steps and Close

Roger Hey Future Networks Manager

Project Outputs

Learning from EFLA:

- Informed revised methodologies for increased FL modelling accuracy
- Updated WPD Modelling Policy for Fault Level at 11kV to 132kV
- Recommendations for future modelling and system operation practices

	WESTERN POWER DISTRIBUTION Serving the Midlands, South West and Wales
	Company Directive
	STANDARD TECHNIQUE: SD7F/2
Determinati	ion of Short Circuit Duty for Switchgear on the WPD Distribution System
	des guidance on calculation of fault levels so as to determine the switchgear installed on the WPD distribution networks.
This document provi	
This document provi short-circuit duty for	switchgear installed on the WPD distribution networks. Jonathan Berry / Peter Aston
This document provi short-circuit duty for Author:	switchgear installed on the WPD distribution networks. Jonathan Berry / Peter Aston

Project Outputs

Load	G74 MVA per MVA Infeed
Majority Domestic	1.0
Split Domestic/Industrial	3.0
Majority Commercial	3.0
Majority Industrial	5.0

Learning from Management:

- Developed real-time fault level values for the first time
- Created a proposed template of revised general load infeed values to inform the industry
- Added to our existing suite of alternative connections to include Fault Level softintertrip schemes, where available

Project Outputs

Learning from Mitigation:

- Experience of three FCL installations
- Created over 50MVA of DG connection availability in Birmingham
- Significantly increased the security of supply to all customers through network paralleling

Substation	Capacity Released
Castle Bromwich	13MVA
Chester Street	19MVA
Bournville	20MVA
TOTAL	52MVA

Next Steps

- Policies have been created for all technologies enabling a fast transition to suitable technologies being transferred to Business as Usual
- Studies are being carried out on new connection schemes to assess FCLs against traditional solutions
- Further research and development of FLMs and FCLs to facilitate refined solutions
- Wider study of revised general load infeeds to look at informing ENA standards (G74)

Serving the Midlands, South West and Wales

Roger Hey Western Power Distribution <u>rhey@westernpower.co.uk</u>

Jonathan Berry Western Power Distribution jberry@westernpower.co.uk

James Bennett Western Power Distribution jbennett@westernpower.co.uk Neil Murdoch

neil.murdoch@wsp.com

Ali Kazerooni WSP ali.kazerooni@wsp.com

wpdinnovation@westernpower.co.uk

www.westernpowerinnovation.co.uk