

NEXT GENERATION NETWORKS

HV TECHNOLOGIES

LCNF2013 Wednesday 13th November 2013

Jonathan Berry MEng (Hons) MIET Innovation & Low Carbon Networks Engineer

- HV network issues tackled by HV Technologies
- Project specific examples:
 - FlexDGrid Fault Level Mitigation Technologies
 - Voltage Control Hitachi D-SVC
 - LLCH S&C STATCOM
 - FALCON Meshed Networks
 - IoS PMUs

LOW CARBON GENERATION

LCNF2013 Wednesday 13th November 2013

Challenges to be overcome

- The inclusion of HV technologies can provide significant network benefit for a number of issues including:
 - Network Security
 - Thermal Capacity
 - Voltage Rise
 - Fault Level
 - Power Factor
 - Power Quality

FlexDGrid

 Three Methods to successfully manage and mitigate the fault level on an 11kV network

FlexDGrid

Fault Level Vs. Policy Limit

- Fault level of a Primary Substation over a year
 - Significant fault level headroom exists

FlexDGrid – Fault Level Mitigation Technologies

Integration of Fault Level Mitigation Technologies

Voltage Control Demonstration – D-SVC

- Performance of D-SVC on 11kV network
- Providing system voltage control

WESTERN POWER DISTRIBUTION

Lincolnshire Low Carbon Hub - STATCOM

- Device to:
 - Control Network Voltage
 - Manage Power Factor
 - Maximise connected DG

 Voltage on a 33kV ring network to be optimised through the use of a STATCOM and an Active Automatic Voltage Control scheme

FALCON – Meshed Networks

- Enabling the increase in connectivity of the 11kV network
 - Enhancing network security
 - Reduced customer impact from faults
 - Extension of asset life

Isles of Scilly & FALCON - Phasor Measurement Units

Phasor Measurement Units installed in Milton Keynes and the Isles of Scilly are able to provide time-stamped, high resolution data on current and voltage waveforms.

Thank you

Jonathan Berry Innovation & Low Carbon Networks Engineer jberry@westernpower.co.uk 07894 258 671 / 0121 6 239 459

www.westernpowerinnovation.co.uk

LCNF2013 Wednesday 13th November 2013

HEAT AND POWER FOR BIRMINGHAM

LCNI 2014 Conference

Innovative DG Connections

Tuesday 21st October 2014

Jonathan Berry – Innovation and Low Carbon Networks Engineer

Agenda

- Project Introduction
- Fault Level Modelling
- Fault Level Monitor Installations

• Fault Level Mitigation Technology Installations

FlexDGrid – What and Why

What are we doing?

Understanding, Managing and Reducing the Fault Level on an electricity network

Why are we doing it?

Facilitating the early and cost effective integration of Low Carbon generation

Why are we doing it now?

Supporting the Carbon Plan – Connection of generation to the grid and development of heat networks – reducing carbon emissions

What is FlexDGrid?

Three integrated Methods leading to quicker and cost effective customer connections through a timely step change in the enhanced understanding, management and mitigation of distribution network Fault Level.

Each Method can be applied on its own whilst the integration of the three Methods combined will provide a system level solution to facilitate the connection of additional Generation.

Effect on Fault Level

Fault Level Heat Maps

Modelling – Increased Granularity

	Unity PF		0.95 leading PF		Unity PF		0.95 leading PF		Gout=0	
	Make	Break	Make	Break	Make	Break	Make	Break	Make	Break
[kA]	6.76	2.50	6.26	2.23	7.13	2.60	6.71	2.43	7.05	2.57
[MVA]	128.8	47.6	119.3	42.5	135.8	49.5	127.8	46.3	134.3	49.0
Difference (%)		5.5	4.0	7.2	9.0	-	-			

Modelling – Sensitivity Analysis

	Variation range		
Cable length	-5%	5%	
Demand	-10%	10%	
Generation PF	Unity, 0.95 leading	, 0.95 lagging, Vset=1	
General load (MVA per MVA)	0	2	
Primary tap position (voltage at HV busbars)	0.95 pu	to 1.03 p.u	

Modelling – Generation Fault Level

Modelling – Fault Level Mitigation Tech Model

	Fault Current Limiter me Substation Test	odel				
Source 1 Source 2	Substation Name Substation Test					
	Firm capacity	78 MVA	Generation fault contribution [MVA/MVA]	4.5 -		
	Switchgears rating (Break)	13.1 kA	Base power	100 MVA		
	Switchgears rating (Make)	33.4 kA Base voltage		11 kV		
	De-rating factor	10 %	Base current	5.25 kA		
	Switchgear policy rating (Break)	11.8 kA	Base impedance	1.21 ohm		
Θ	Source 1 - Upstream Fault Contrit	oution	Source 2 - Upstream Fault Contribution			
• •	Upstream breaking fault contribution	7 kA	Upstream breaking fault contribution	8 kA		
	Upstream making fault contribution	19 kA	Upstream making fault contribution	20 kA		
<mark>윤</mark> · · · · · · · · · · · · · · · · · · ·	Upstream X/R ratio	20 -	Upstream X/R ratio	10 -		
	Voltage at Source	1 p.u	Voltage at Source	1 p.u		
Bus 1 🔶 Bus 2						
	Source 3 - Downstream Fault Contribution Source 4 - Downstream Fault Contribution					
FCL	Breaking fault contribution 2 kA		Breaking fault contribution	1 kA		
	Making fault contribution	3 kA	Making fault contribution	2 kA		
Source 3 Source 4						
	Pre-Fault FCL loading	50 A				
Fault current limiter technology						
Pre-Saturated Core FCL (PCFCL)	Without FCL	Bus 1 Bus 2	With FCL	Bus 1 Bus 2		
	Breaking fault current [kA]	18.0 18.0	Breaking fault current [kA]	10.0 10.0		
C Resistive Superconducting FCL (RSFCL)	Making fault current [kA]	44.0 44.0	Making fault current [kA]	24.0 24.0		
Solid-State FCL (SSFCL)	Generation headroom at Bus 1 (G1) [MVA]	0.0 -	Generation headroom at Bus 1 (G1) [MVA]	7.6 -		

Excel Based FLMT Model

LCNI 2014 Conference - Innovative DG Connections

Fault Level Monitor Installations

FLM Site Designs

Fault Level Monitor Installations

Ladywood FLM Installation

Fault Level Results from Installation

Modelled Vs. Monitored Fault Level (10ms RMS)

Fault Level Mitigation Technology Installations

Substation	Technology	Manufacturer	Delivery Date
Castle Bromwich	Pre-Saturated Core FCL	GridON	Q4 2014
Chester Street	Resistive Superconducting FCL	Nexans	Q2 2015
Bournville	Resistive Superconducting FCL	Nexans	Q3 2015
Kitts Green	Power Electronic FCL	Alstom	Q4 2015
Sparkbrook	Power Electronic FCL	Alstom	Q1 2016

Pre-saturated Core FCL

Design

GridON FCL – During Factory Acceptance Testing

Resistive Superconducting FCL

Nexans FCL

Temperature

300k

Power Electronic FCL

Alstom Design

FCL Benefits

FlexDGrid Requirements

Following the installation of an FCL be able to:

- Operate the 11kV network in parallel
- Increase the level of generation on the network by 10% of a substation's firm load capacity

Faster Connections

- Installation of an FCL can be carried out quicker than traditional reinforcement

Reduced Costs

 Installation of an FCL can be completed cheaper than traditional reinforcement

Greater Benefits

- Increased fault level reduction over traditional solutions
- Security of supply improvement through parallel network operation

Policies

Now in Place:

- EE201 FLM Engineering
 Specification
- EE202 FCL Engineering
 Specification
- ST_SD4R Application and Connection of 11kV FLMs
- ST_SD4S Application and Connection of 11kV FCLs

	WESTERN POWER DISTRIBUTION Serving the Midlande, South West and Wales				
	Company Directive				
ENG	INEERING SPECIFICATION				
	EE SPEC: 202				
Fault Current I	Fault Current Limiter (FCL) Devices for use on the 11kV Network (FlexDGrid)				
	Policy Summary Western Power Distribution's engineering specifications for fault a limiter (FCL) devices on the 11kV network.				
Author:	J Berry Innovation and Low Carbon Networks Engineer				
Implementation Date:	July 2014				
Approved by					
	Policy Manager				
Date:					
EE,202 July 2014	-1 cf42 -				

Jonathan Berry Innovation and Low Carbon Networks Engineer 0121 6 239 459 jberry@westernpower.co.uk

HEAT AND POWER FOR BIRMINGHAM

FlexDGrid

Network Performance

Wednesday 25th November 2015 LCNI Conference

Agenda

- Project Overview
- Safety Increasing network data
- Security Reliability of supply
- Flexibility Customer Connections

FlexDGrid – What and Why

What are we doing?

Understanding, Managing and Reducing the Fault Level on an electricity network

Why are we doing it?

Facilitating the early and cost effective integration of Low Carbon generation

Why are we doing it now?

Supporting the Carbon Plan – Connection of generation to the grid and development of heat networks – reducing carbon emissions

What is FlexDGrid?

Three integrated Methods leading to quicker and cost effective customer connections through a timely step change in the enhanced understanding, management and mitigation of distribution network Fault Level.

Each Method can be applied on its own whilst the integration of the three Methods combined will provide a system level solution to facilitate the connection of additional Generation.

Effect on Fault Level

.

Fault Level Heat Maps

Safety – Increasing Network Data

• Installation of 10 Fault Level Monitors has enabled significant fault level data to be captured

Safety – Increasing Network Data

- Fault Level data from 11kV networks is now available to enable updated power system analysis models to be created
 - G74 prescribes 1MVA/MVA for LV load on the 11kV network

Ladywood				Elmdon							
MVA/MVA per	00:00	06:00	12:00	18:00	Average	MVA/MVA per	00:00	06:00	12:00	18:00	Average
1 month	2.1	2.1	1.9	2.2	2.1	1 month	2.1	2.2	2.5	2.3	2.3
weekdays of 1 month	2.3	1.7	1.6	2.5	2.0	weekdays of 1 month	2.2	2.3	2.5	2.6	2.4
weekends of 1 month	2.4	2.1	1.8	2.3	2.2	weekends of 1 month	2.1	1.8	3.0	1.8	2.2
week 1	2.3	1.7	1.6	2.5	2.0	week 1	2.4	2.5	2.8	2.5	2.6
week 2	2.2	2.7	1.4	1.7	2.0	week 2	1.6	2.2	2.4	2.0	2.1
week 3	2.3	1.7	2.2	2.5	2.2	week 3	2.8	2.6	2.7	2.5	2.7
week 4	1.7	2.5	1.9	2.0	2.0	week 4	1.9	2.0	2.3	2.5	2.2
weekdays of week 1	1.9	1.4	2.0	2.2	1.9	weekdays of week 1	2.6	3.3	2.4	2.0	2.6
weekdays of week 2	1.6	3.2	1.7	1.6	2.0	weekdays of week 2	1.7	2.0	2.5	2.3	2.1
weekdays of week 3	2.4	2.2	2.0	2.6	2.3	weekdays of week 3	2.9	2.8	2.8	2.9	2.9
weekdays of week 4	2.3	2.0	1.6	2.4	2.1	weekdays of week 4	1.6	2.3	2.2	2.8	2.2
Average	2.1	2.1	1.8	2.2		Average	2.2	2.4	2.6	2.4	

Substation	domestic (%)	Small I&C (%)	Large I&C (%)
Elmdon	7.18%	7.30%	85.52%
Ladywood	20.42%	28.14%	51.44%

Safety – Increasing Network Data

- Real-time fault level data now enables control engineers to have another set of information to allow:
 - Potential to parallel additional elements of network
 - Greater information when planning network changes
 - Visual understanding of the effect a network change has on

Security – Reliability of supply

- Through the installation of five FCLs a significant part of the Birmingham 11kV network will be able to be paralleled
- Network paralleling will have a positive effect on:
 - Short Interruptions
 - Customer Interruptions
 - Customer Minutes Lost

Security – Reliability of supply

- Losses benefits are also seen through the paralleling of the network through FCL installations
 - Changes average load through transformer from 70/30 to 50/50 percentage split
 - Saving of 480,000kWh per annum
 - Equivalent to 205,000kg CO2
 - If the unbalance was 80/20 then the savings per annum would be:
 - 1,080,000kWh and 462,000kg CO2

Flexibility – Customer Connections

- Through real-time fault level data availability the aim is to be able to provide flexible connections to customers to maximise the use of existing network infrastructure
- Utilising the fluctuating nature of fault levels:
 - Time of day
 - Week day / Weekend
 - Season

Flexibility – Customer Connections

Flexibility – Customer Connections

Jonathan Berry Innovation and Low Carbon Networks Engineer 0121 6 239 459 jberry@westernpower.co.uk

HEAT AND POWER FOR BIRMINGHAM

Fault Current Limiters Testing, Operation and Learning

Jonathan Berry 12th October 2016

Introduction

- Policy documentation
- PSCFCL and RSFCL
 - Overview
 - Testing
 - Technology operation
 - Learning points

Policy Documents

- Two documents specifically for each technology:
 - Operation and Control
 - Inspection and Maintenance
- Contents derived from the design and installation process

	STERN POWE DISTRIB erving the Midlands, South V	
Company Dire	ctive	
STANDARD TECHNIQU	UE : OC1Y/1	
Operation and Control		
Superconducting Fault Cu Policy Summary This document covers Western Power Dist control of the Nexans 11kV Superconducting Low Carbon Networks Fund (LCNF) Tier-2 P		WESTERN POWER DISTRIBUTION Serving the Middands, South West and Wides Company Directive
Author: Jonathan Berry Implementation Date: July 2016 Approved by I Mill Second	Operation and C Fault Current Li	NDARD TECHNIQUE : OC1W ontrol of GridON 11kV Pre-Saturated Core miter installed at Castle Bromwich Primary on for use on the FlexDGrid project
Network Services	control of the GridON 11k	stem Power Distribution's requirements for the operation and Pre-Saturated Core Fault Current Limiter (PSCPCL) as part of und (LCNP) tise-2 Project, FlexDGrid.
	Author:	J Berry
NOTE: The current version of this document is stored	Implementation Date:	June 2015
copy in electronic or printed format may be out of dat	Approved	Phil James
ST:OCIY/1 July 2016 - l c	Date:	Network Services Manager (Wales) July 2015.
	ST:OCIW June 2015	- 1 of 19 -

Policy Documents

Operation and Control:

- Safety considerations
- System description
- Network connection options
- Initialising Sequence
- Energising
- Isolation
- Earthing
- Alarms and trips

Inspection and Maintenance:

- Inspection procedure
- Maintenance guidance
- Maintenance Intervals

- 3.2.2 The DC bias for the FCL is guaranted by 5 separate DC power supplies which can provide up to a total of 500.4. The required DC bias at 300.4VA at 365.4 and driving an overload of 38MVA, 490A of DC bias is nequired. The DC bias has to be controlled to ensure that the fault limiting performance is not reduced (no high DC bias) whilst ensuring that the device impedance is not too high (too low DC bias).
- 3.3 General Arrangement
- 3.3.1 Figure 3-2 below shows the general arrangement of the FCL.

Figure 3-2: General Arrangement of FCL

- 3.3.2 There are two cubicles associated with the FCL. The AC orbicle is the s which houses the Programms Logic Controller (PLC), Human Machine In modula, relays, FCL tentus monitor, condition monitor and auxiliary writing. To contain the DC power rupplies used to create the DC bins for the FCL. Th are supplied from a separate UPS system and battery located in the adjace Monitor equipment room.
- 3.3.3 The FCL is equipped with on-board radiators and a single fan providing ONAF cooling fan is controlled by the FUC which monitors the AC load current fit the FCL. The fan is worked on when the current in the FCL encoded 1575A (fan witches off once the current drops below 1400A.
- 3.3.4 In addition to the standard devices found on a transformer, the FCL is also Calisto Dissolved Gas Analysis (DGA) device and a regenerative breather.

ST:OC1W	June 2015	- 7 of 19 -

6.3 DC Supplies

- 6.3.1 Upon emergization of the muchiney supply, the DC power supplies will begin a start-up sequences invited by the FLC. This start-up sequences involves the DC power supplies ramping up from 0.4 to 490.4, then setting back to the lowest DC current of 130.4. This DC bits will source that the curve of the FCL we saturated.
- 63.2 When the PLC senses a change in the 11kV AC current (through the CTs in the 11kV coble box), the DC hins will be automatically adjusted to sensure that the AC impedance of the FCL is maintained within limits. Table 6-1 shows the target DC bias current against the 11kV AC current.

11kV AC Primary Current (A)	DC Bias Current (A)
0-400	130
401 - 800	220
801 - 1000	270
1001 - 1250	320
1251 - 1575	365
1576 - 2000	490

- 6.4 FCL Initialising Sequence
- 64.1 Prior to exargining the FCL on the 11kV network, the system must first of all run an initializing sequence. To perform this sequence the supply to the DC cubicle shall be writhcase on at the UPS, intern exarging the AC cubicle and the PLC. The FLC will then check all the alarm and trip signals and begin to power up the DC supplies. The initializing process lasts about 2 minutes and during this time the "System Initialie Alarm" will be present.
- 6.5 Isolation
- 6.5.1 For disconnection and isolation of the FCL the sequence shall be as follows:
 - Close Bus-Section A-B this will allow any load current to by-pass the FCL. Note that this will result in a short-term solid parallel of windings GT1A and GT1B
 - Open Bus-Section U-V this will break the parallel of GT1A and GT1B windings
 - Open FCL circuit breakers this will remove the FCL AC winding from the network. The DC bias current will still be present but will drop to 130A
- 6.5.2 After isolation, should there be a need to work on the FCL, the DC bits must be turned off. This is achieved by variations of the axim LVAC supply from the UFS to the DC cubicle. Points of isolation can then be applied to the 11kV FCL circuit treatment and LVAC supply writch at HoUPS. Section 6.7 details how to earth the FCL prior to carrying out work.

- 12 of 19 -

ST:OCIW June 2015

Fault Level Reduction

- Unfortunately(!), we have had no faults on the 11kV networks which have FCLs connected
- However, thorough HV testing has demonstrated the performance of the FCLs
- The following slides explain the short circuit testing of the FCLs

Pre-Saturated Core Fault Current Limiter

Pre-Saturated Core Fault Current Limiter

- Also known as an "Inductive FCL" the PSCFCL uses the principles of magnetisation in a core to create a variable reactor
- The device comprises:
 - Laminated Cores (similar to that of a reactor)
 - AC Coils (connected in series with the 11kV network)
 - DC Coils (supplied from a local source)

Diagram of PSCFCL

Normal Operation of PSCFCL

Operation of PSCFCL during a fault

Details for GridON PSCFCL Installation

- Rating: 30MVA ONAN, 38MVA ONAF
- Break fault level reduction required: 44%
- Peak fault level reduction required: 53%
- Mass: 168 Tonnes
- Dimensions (LxWxH): 6.4 x 4.5 x 5.3 m

Milestone	Date
Short Circuit Tests	15 th August 2014
Factory Tests Complete	6 th September 2014
Device Energised	8 th April 2015

Testing – GridON FCL

- Tested at Ausgrid's Testing & Certification Lab in Sydney
- FCL underwent several short
 circuit tests to determine the
 performance
- Testing was successful with the FCL meeting the requirements of the contract

Testing – GridON FCL

Testing – GridON FCL

Summary of short circuit tests are shown below:

Scenario	Prospective Current	Required Limitation	Actual Limitation
RMS Break	6.85kA	4.06kA	3.71kA
(nom. DC Bias)			
RMS Break	6.85kA	4.06kA	3.75kA
(min. DC Bias)			
Peak Make	20.2kA	10.16kA	10.13kA
(nom. DC Bias)			

- Initial alarm received for "One DC Supply Failed", FCL switched off for GridON investigation
- Investigation found the DC supplies to be operating correctly
- Other tests were taken and the decision was made to reenergise the FCL
- Device tripped "Two DC Supplies Failed" approximately 2 weeks later

- GridON carried out a full investigation after the FCL tripped
- It was found that the DC sensing circuit was capturing "OA" even though they were supplying the minimum bias current (130A)
- The DC sensor and circuit were re-designed and the FCL was re-energised on 17 December 2015

Learning – GridON FCL

Changes in Design

The initial design from GridON agreed during contract:

- 5.4x4.2x5.0m (LxWxH)
- 161 Tonnes

During the detailed design phase the device footprint and weight increased to:

- 6.4x4.6x5.4m (LxWxH)
- 168 Tonnes

An extra 20% allowance had been made

during WPD design

Learning – GridON FCL

Magnetic Shield

Contract stated that magnetic field outside of the enclosure had to be kept below 5mT

- Design produced required further structural calculations
- Installation of one shield wall after FCL installation
- Shield had to be covered to protect sharp edges

<u>Carefully consider installation of shield in</u> <u>overall design</u>

Learning – GridON FCL

Short circuit testing

Witnessing of short circuit testing revealed issues with high magnetic field during faults:

- Operation of buchholz relay
- Alarm from de-hydrating breather
- Alarm from Calisto Gas Monitor

<u>These issues were rectified before final</u> <u>testing so that the performance onsite was</u> <u>not affected</u>

Resistive Superconducting Fault Current Limiter

Resistive Superconducting Fault Current Limiter

- Manufactured by Nexans, Germany
- Exploits the properties of High Temperature Superconducting (HTS) material (Yttrium barium copper oxide)

Details for Nexans RSFCL Installations

Chester Street 132/11kV Substation:

- 1600A rated
- Peak fault reduction (@10ms) 19.76kA to 9.90kA or below
- Peak fault reduction (@90ms) 7.03kA to 3.68kA or below
- 33.4kA short circuit current withstand capability

Milestone	Date
Factory Tests Complete	23 rd September 2015
KEMA Tests Complete	5 th October 2015
Device Energised	25 th November 2015

Bournville 132/11kV Substation:

- 1050A rated
- Peak fault reduction (@10ms) 21.97kA to 7.70kA or below
- Peak fault reduction (@90ms) 7.66kA to 3.05kA or below
- 33.4kA short circuit current withstand capability

Milestone	Date
Factory Tests Complete	30 th November 2015
KEMA Tests Complete	7 th December 2015
Device Energised	17 th February 2016

Testing – Nexans RSFCL

- Tested at KEMA's Testing Lab in Arnhem, Netherlands
- FCL underwent several short circuit tests to determine the performance
- Testing was successful with the FCL meeting the requirements of the contract

Testing – Nexans RSFCL

Testing – Nexans RSFCL

Testing - Nexans

Chester Street

Prospective Current (@10ms) (kA)	Prospective Current (@90ms) (kA)	Applied Phase	Required Limitation (@10ms) (kA)	Required Limitation (@90ms) (kA)	Limited Current (@10ms) (kA)	Limited Current (@90ms) (kA)	Trip Signal (ms)
20.0	7.17	L3	9.90	3.68	9.07	2.86	24.0
20.0	7.17	L3	9.90	3.68	9.11	2.83	15.0
20.0	7.17	L1	9.90	3.68	9.14	2.87	15.0

Bournville

Prospective Current (@10ms) (kA)	Prospective Current (@90ms) (kA)	Applied Phase	Required Limitation (@10ms) (kA)	Required Limitation (@90ms) (kA)	Limited Current (@10ms) (kA)	Limited Current (@90ms) (kA)	Trip Signal (ms)
22.5	8.0	L1	7.70	3.05	6.64	2.05	13.3
22.5	8.0	L2	7.70	3.05	6.56	2.03	13.6
22.5	8.0	L3	7.70	3.05	6.43	1.98	13.6

Safety Considerations

- Pressure relief valves:
 - Electromechanical
 - Mechanical (>2.5 bar)
 - PRD (>5bar)
- Bund for safe containment of liquid nitrogen
- Oxygen sensor for detection of low oxygen levels
- Access/Egress
- Policy documentation

Operation Overview

- No 11kV network faults!
- However, issues with the cooling systems:
- Chester Street FCL currently unavailable
- Bournville FCL currently unavailable
- Manufacturer is currently working to fix cooling system issues

Learning – Issues with Cooling System

- Chester Street FAT (18-20th May 2015)
- Cooling system was unable to regulate the temperature of the LN₂ to the required setpoint
- The temperature was rising slowly and would have eventually led to a quench event
- Caused By:
- Higher than expected electrical losses due to eddy currents
- Air leak into the cryostat vessels through safety valve under sub-atmospheric pressure conditions
- Solution:
- Device rating reduced 1300A continuous operation, 1600A for 5 hours maximum
- Replace 3 off safety valves with single electronic valve with correct rating

Detailed cooling system calculations required in future with adequate margin applied.

Learning – Issues with Cooling System

- First time with cooling system in sustained operation
- A number of recooler faults at both Chester Street and Bournville:
 - Damaged pipework during commissioning
 - Water level dropping below the trip level.
 - Air intake becoming clogged with debris leading to inadequate air flow
- A number of issues with the compressor components:
 - Minor helium leak due to loose connections
 - Water leak at the connection
 - Power supply failures

Learning – Issues with Cooling System

Works required at Chester Street to fix the cooling system issues:

- Recooler M9 has an undiagnosed fault (overheating and low cooling water level). The manufacturer is organising an investigation by a specialist company
- With M9 switched off the cooling capability of the device is limited. Decision taken to keep the FCL disconnected
- The first scheduled maintenance for the recoolers is due in September

Works required at Bournville to fix the cooling system issues:

- M5 compressor unit power supply has failed and requires replacement
- Investigate root cause of why compressors M3 and M6 were not operational
- Repair a water leak to compressor M5
- Refill Nitrogen level

Learning – Enclosure

Advantages:

- Majority of components pre-installed
- Control system wiring pre-installed
- Easier for testing
- Less pipework

Disadvantages:

- Significant additional weight (approx. 29t)
- Logistics to transport and offload

Conclusion:

- Minimal improvements required to the design
- Larger enclosure to allow better access for cable termination
- Preferred solution to the alternative of installing the device in an existing building, provided that there is sufficient space in the substation compound

THANKS FOR LISTENING

Serving the Midlands, South West and Wales

Jonathan Berry Western Power Distribution 0121 6 239 459 / 07894 258 671 jberry@westernpower.co.uk

wpdinnovation@westernpower.co.uk

www.westernpowerinnovation.co.uk