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Introduction



Project aims

The REACH Alpha project is working with rural community energy groups to 
identify local decarbonisation priorities and explore ways to accelerate their 
transition to net zero using a modular energy centre. 
This modular solution within a constrained electricity network offers a shared 
resource that supports the expanded use of low-carbon heating, rapid electric 
vehicle (EV) charging, and renewable energy generation. 



Modelling aims

• The economic efficiency of the modular energy centre as a solution 
supporting local decarbonisation depends heavily on the uptake of EVs and 
low-carbon heating systems.

• To evaluate this, it’s important to simulate the energy demand of each home 
in the community in various future energy scenarios.

• Simulated typical community heat pump loads and worst-case (coldest 
winter) scenarios can inform the optimal sizing of the modular energy 
centre.

• We show how optimised smart controls and coordinated control strategies 
can mitigate the peak worst-case scenario aggregate electricity demands 
across the community. 



Work packages

This slide deck contains the complete content for the following work 
packages:

• WP2 - Baseline community low-carbon heat loads
• Simulating the demand of heat pumps in two communities in various future 

energy scenarios.
• WP3 - Coordinated community control of low-carbon heat loads

• Modelling and evaluating two contrasting methods for coordinating residential 
low-carbon heat loads across two communities.



Heat demand modelling



Heat demand modelling: objective

• Simulate the heat demand of homes in the Bigbury Net Zero (BNZ) and Awel Aman 
Tawe (AAT) communities, to estimate the additional electricity demand from the 
transition from gas boilers to hybrids and heat pumps.

• These heat pump electricity profiles can be added to baseload and EV electricity 
profiles. This gives realistic forecasts of total electricity demands arising from 
electrifying heat with low-carbon heating systems. 

• This will allow us to simulate different future energy scenarios with varying levels 
of heat pump and EV penetration and model the impact on aggregate load at the 
community level.



Heat demand modelling: approach

• Choose a set of 20 house archetypes for each community (which will be duplicated 
and mapped onto the real houses in each community)

• These 20 archetypes represent the full range of houses in terms of physical size 
and the occupants living in them, and also encompass diversity of space heating 
and hot water demand patterns.

• For each archetype, 2 simulation runs are carried out at a half hourly resolution 
across a whole year to create heat pump electricity profiles in 2 weather 
scenarios:

• Typical year- to provide examples of typical heat pump operation.
• Coldest year- to ensure peak demand is represented.

• The heat pump operates under standard manufacturer controls (with a time-clock 
with optimum start and weather compensated flow temperature), as an example 
of how heat pumps could operate without any smart controls.



Determining house archetypes

• Each community is simulated using 20 archetypes, using a unique digital twin.
• These digital twins have randomised thermal dynamics and a heat transfer 

coefficient consistent with the house size.
• Each archetype is assigned an occupancy type and work type, which affects the 

choice of heating schedule, heating setpoint, and hot water consumption profile 
(which have an impact on heat pump usage patterns).

• Low-carbon heating systems were allocated to archetypes, such that the 
proportion of archetypes with each heating system type were aligned with the 
energy scenarios we modelled for the communities. This ensures that each 
archetype is duplicated a similar number of times, to more accurately extrapolate 
the heat load to the community level.



Heat demand modelling: Occupancy and Work

• For AAT, ONS data from Gwaun-Cae-Gurwen and 
Cwmllynfell in South Wales was used to inform the 
type and number of occupants, and the work patterns 
used.

• The age profile was used to inform the proportion of 
older occupants (more likely to have higher setpoints) 
and the work types, as older occupants are likely to 
be retired. This impacts the heating schedule set.

• Household size was used to inform the number of 
occupants- the proportion of families, couples and 
single occupants.

• Hours per week worked was used to inform the 
proportion of part time workers, which influences the 
heating schedules set.



Heat demand modelling: Occupancy and Work

• For BNZ, ONS data from Bigbury in South West 
England was used for the same purpose.

• It was noticeable that Bigbury had a much higher 
proportion of older occupants and retirees than the 
national average. This was reflected in our archetype 
selection.

• The majority of households had 2 occupants. Hence, 
the number of families and single occupant 
archetypes is lower for Bigbury.



Heat demand modelling: House size

• EPC data was used to determine the 
total floor areas (TFA) of the houses.

• The BNZ area has a higher proportion 
of larger properties than the AAT 
area.

• For each community, quantiles at 20 
evenly-spaced points were sampled 
from the sample distributions. 

• These floor areas, were fed into the 
models, in order to estimate heat 
demands.



Heat demand modelling: Heating systems

• 2024 DFES (Electric Engagement 
pathway) scenarios for 2035 and 2050 
were used to proportionally allocate 
heating systems to archetypes.

• For the AAT community, due to the higher 
uptake of thermal storage, a higher 
proportion of archetypes were given 
thermal stores.

• Ground source heat pumps and heating 
systems with thermal stores were more 
likely to be assigned to larger houses.

• Only low-carbon electrified heating 
systems were modelled, as these 
contribute to the aggregate electricity 
load.

Community Technology Baseline 2035 2050

AAT Hybrid 0 31 27

AAT Non-hybrid ASHP 34 152 225

AAT Non-hybrid ASHP + thermal storage 0 172 460

AAT Non-hybrid GSHP 1 24 216

AAT Non-hybrid GSHP + thermal storage 0 23 224

BNZ Hybrid 0 17 15

BNZ Non-hybrid ASHP 43 79 104

BNZ Non-hybrid ASHP + thermal storage 0 15 37

BNZ Non-hybrid GSHP 6 13 21

BNZ Non-hybrid GSHP + thermal storage 0 7 15



House archetypes

• The 20 archetypes for AAT are 
summarised here.

• The proportions of types of homeowners 
and work types were determined by the 
data on the previous slides.

• These inputs directly feed into the 
schedule and setpoint choices in the 
simulations, and the thermal dynamics of 
the archetypes.



House archetypes

• The 20 archetypes for BNZ are 
summarised here.

• The floor areas areas were much larger, 
and hence the corresponding simulated 
heat demands were higher in the BNZ 
community, compared to AAT.

• The higher proportion of older and 
retired occupants is reflected in the work 
and homeowner types.



Example distributions based on real customers Sample schedule

Modelling of heating setpoints & schedules

Each archetype has a randomly generated schedule and setpoint, 
dependent on the occupants and their working schedule.

• For example, this represents retired occupants being likely to be at 
home more during the day, with the house heated warmer



Domestic hot water modelling

• Hot water usage estimated per month for each 
archetype based on number of occupants (SAP 
assumptions)

• Use real consumption patterns (from previously 
monitored homes), chosen to match by similar 
monthly consumption

• Create yearly consumption profile to be used within 
simulations (more accurate than a simple demand 
profile)



Annual forecasts
• The Passiv annual forecasting tool was used 

to simulate the electrical demand from the 
heat pump for each archetype.

• This tool allows us to forecast detailed energy 
demand at half hourly intervals throughout a 
whole year.

• Load profiles and running costs can be 
predicted for different heating system options 
and low carbon technology configurations.

An example plot of a subset of annual forecast outputs 



Weather data
• Weather data was used from Mumbles Head and Plymouth, as they were the nearest weather stations to the 

AAT and BNZ communities respectively.
• For the coldest weather scenario, 2018 weather data was used, as this year had a prolonged cold spell (“Beast 

from the East”)  so we are able to assess the impact of the ‘worst case’ weather scenario on the aggregate 
community demand.

• For more typical profiles, Typical Meteorological Year (TMY) weather data was used. The TMY data is selected 
by analysing historical data and finding real months of data which best match the long term averages of daily 
min/max temperature and daily irradiation. A comparison of this weather data for BNZ for February and 
March is shown below.



Heat demand modelling: results

• Example outputs from the annual forecast 
simulations, showing average heat pump 
electricity demand profiles for the month of 
January in typical weather conditions.

• Three different archetypes from the BNZ 
community are shown.

• Graphs show scheduled setpoints, achieved 
room temperatures, and heat demand (in kWh 
per half hour).

• Heat pump demand varies significantly 
archetype-to-archetype. Here, the largest 
archetype is compared to 2 of the smallest.

• Different occupancies cause changes in 
heating patterns.



Heat demand modelling: 
coldest days

• Heat pumps were sized such that they were capable of 
meeting heating demands at all times.

• However, on the coldest days of the year, some heat pumps 
are capable of providing more flexibility than others.

• The top graph shows a simulated heat pump with a thermal 
store that has to preheat to meet the second day’s 21.5°C 
evening setpoint. This is despite consistently running at the 
maximum electrical power output of the heat pump and 
discharging the thermal store.

• For homes like this, we are cannot procure much flexibility, 
without violating the householder’s requested comfort.

• The bottom graph shows a more typical case where the heat 
pump is running hard most of the time in the coldest weather, 
but still keeps the house sufficiently warm and has some 
room for flexibility.



Scenario modelling



Scenario modelling: approach

• Use 2024 DFES (Electric Engagement pathway) scenarios for 2035 and 2050 to 
find the numbers of each low-carbon asset in the community.

• Produce a total non-heat electricity load profile (EV usage plus other ‘baseload’) 
for each community in these scenarios.

• Map each low-carbon heating system in the community to one of the 20 
archetypes used for the heat demand simulations.

• Calculate the aggregate demand (non-heat load plus heat load) resulting from the 
simulations in the case with standard manufacturer controls and the coldest 
weather conditions.

• Investigate whether aggregate demand can be decreased using a simple 
switch-off command at times of peak load.

• Run Passiv optimisation and inter-home coordination on all heating systems to 
minimise aggregate load, whilst maintaining user comfort.



Predicted community asset uptake

• 2024 DFES (Electric Engagement 
pathway) scenarios for 2035 and 2050 
were used to find the numbers of each 
low-carbon asset in the community.

• Each archetype is replicated, such that 
the total number of each heating 
system aligns with the predicted DFES 
scenarios.

• The number of EVs was also determined 
using these scenarios.

• There are 1488 MPANs in Awel Aman 
Tawe (AAT) and 383 in Bigbury Net Zero 
(BNZ). This was used to determine the 
number of baseload profiles used.

Community Technology Baseline 2035 2050

AAT Hybrid 0 31 27

AAT Non-hybrid ASHP 34 152 225

AAT Non-hybrid ASHP + thermal storage 0 172 460

AAT Non-hybrid GSHP 1 24 216

AAT Non-hybrid GSHP + thermal storage 0 23 224

AAT EV 31 1476 1681

BNZ Hybrid 0 17 15

BNZ Non-hybrid ASHP 43 79 104

BNZ Non-hybrid ASHP + thermal storage 0 15 37

BNZ Non-hybrid GSHP 6 13 21

BNZ Non-hybrid GSHP + thermal storage 0 7 15

BNZ EV 19 428 500



Modelling non-heat load

• Diversified EV and baseload profiles 
provided by National Grid were used to 
simulate non-heat loads.

• EV profiles are characterised by high 
overnight usage, whilst other baseload 
usage follows a pattern of high usage 
during the morning and evening hours.

• Non-heat, non-EV baseload is assumed 
to be constant. Increased EV uptake 
between 2035 and 2050 causes a small 
increase in non-heat load.

• If EV chargers are not controlled 
intelligently, the largest peaks occur 
overnight.



Modelling total electrical load (standard 
controls)

• In the coldest conditions, heat pumps 
are running near their capacity most of 
the time.

• Even with a optimum start, time-clock 
control strategy, the heat pumps will 
have to run throughout the night to hit 
any morning setpoints.

• This results in even higher demand 
during the EV peak.

• This becomes more of a problem in 
2050, as heat pumps become a larger 
proportion of the total load.

• AAT has a slower uptake of heat pumps 
than BNZ, hence heat pumps cause 
less of an issue in 2035.



Modelling total electrical load 
(standard controls + naive turnoff)

• We simulate a scenario where the 
modular energy centre sends an 
automated command to adjust heat 
pump settings to turn off for two hours 
in individual homes.

• This was scheduled overnight on Feb 
28/March 1st between 00:00-02:00 
(when the existing EV peak occurred). 

• This duration is insufficient to avoid 
the peak, as the EV peak lasts longer 
than this.

• Immediately after, most heat pumps 
turn back on at near maximum power, 
causing an issue at 02:00.



Modelling total electrical load 
(standard controls + naive turnoff)

• We also simulate a scenario where the 
modular energy centre sends an 
automated command to adjust heat 
pump settings to turn off for six hours 
in individual homes.

• This was scheduled overnight on Feb 
28/March 1st between 22:00-04:00 
(when the existing EV peak occurred). 

• This does reduce the overnight peak in 
all cases, however this greatly impacts 
householder comfort.



Modelling total electrical load 
(standard controls + naive turnoff)

• Although the peak overnight demand is 
reduced in all cases, turning off the 
heat pump for 6 hours is not an 
acceptable solution as the 
householders will be cold for the next 
day.

• For the archetype shown here, the turn 
off period causes a major drop in 
temperature.

• The heat pump has to run at its 
maximum power and maximum flow 
temperature for the next day, yet it 
never recovers to hit the requested 
setpoint.



Modelling total electrical load 
(Passiv optimisation + coordination)

• Passiv coordination attempts to 
restrict aggregate power to set levels 
within certain time periods.

• Here, we setup the maximum power 
limits to flatten the load as much as 
possible.

• This results in a much flatter demand 
profile, and is able to work around the 
overnight EV spike without 
compromising on comfort (allowing 
each home to be a maximum of ~0.5°C 
under setpoint).



Sample coordination behaviour: 
Hybrid

• This shows an example of how a 
hybrid operates would operate 
during this period under 
coordination in the AAT community.

• The hybrid is likely to run the boiler 
in cold conditions regardless, as it 
is more cost effective to do this.

• Hence, it can meet the 
householder’s comfort and honour a 
0kW maximum electrical power at 
any time.

• Hybrids are the best type of heating 
system for procuring flexibility with 
no downsides for the occupants.



Sample coordination behaviour: 
GSHP

• This shows an example of how a 
ground source heat pump would 
operate optimally during this period 
under coordination in the AAT 
community.

• The heat pump reduces overnight 
usage, particularly in the worst 
half-hour of EV load and at higher 
flow temperatures during the day.



Sample coordination behaviour: 
ASHP + Thermal Store

• This shows an example of how an 
air source heat pump with a 
thermal store would operate 
optimally during this period under 
coordination in the AAT community.

• The thermal store provides some 
additional flexibility, by allowing the 
thermal store to discharge during 
the overnight signal to reduce 
power.

• Hence, the heating system can still 
hit the desired setpoint in the 
morning.



Modelling total electrical load 
(Aggregate load comparison)

• Passiv controls reduce the peak load by coordinating across 
all homes, to create a flatter demand profile. 

• In all scenarios, Passiv coordination provides a similar or 
better reduction in peak load than a simple switch off 
method. This could reduce the required capacity of the 
energy centre.

• Note that control strategies have different impacts on 
householder comfort. In particular the 6 hour switch off 
scenario has a big impact on householder comfort whereas 
the Passiv coordination scenario ensures comfort is 
maintained. 

Scenario Standard 
controls

Standard controls 
+ 2h switch off

Standard controls + 
6h switch off 

Passiv 
coordination 

AAT 2035 3574 3572 3046 3047

AAT 2050 5534 5539 4527 3509

BNZ 2035 1112 1104 860 865

BNZ 2050 1411 1416 1065 1006

The table shows the peak load (kW) in the communities on the evening/morning of Feb 
28th/March 1st, with various control strategies.



Modelled comfort comparison

• This table shows the maximum room temperature below the requested setpoint at the worst 
home, with various control strategies.

• Passiv coordination provides comparable comfort to standard non-smart controls at the worst 
homes, allowing only a maximum of ~0.5°C under setpoint. 

• This is more equitable, as homes  switch off according to their ability to provide flexibility, whilst 
ensuring that no individual home is particularly cold.

• As shown previously, switching heat pumps off without coordination means some householders 
will be cold for the following day.

Scenario Standard 
controls 

Standard controls + 
2h switch off 

Standard controls 
+ 6h switch off 

Passiv 
coordination 

AAT 2035 0.5 1.12 2.86 0.38

AAT 2050 0.5 1.12 2.86 0.51

BNZ 2035 0.19 0.98 2.57 0.50

BNZ 2050 0.19 0.98 2.57 0.52



Modelled comfort comparison

• This table shows a ‘discomfort’ metric defined 
by the total “degree-hours” below desired 
room temperature setpoint, averaged across 
homes.

• Here we see that the AAT 2050 coordinated 
scenario causes more ‘discomfort’ over more 
homes, as coordination leverages the allowed 
0.5°C under setpoint, when attempting to 
minimise maximum power.

• In reality, 0.5°C below setpoint is likely to be 
insufficient to be perceived as ‘discomfort’ for 
householders.

Scenario Standard 
controls

Standard controls 
+ 2h switch off

Standard controls 
+ 6h switch off

Passiv 
coordination

AAT 2035 0.05 0.85 5.41 0.1

AAT 2050 0.04 0.85 5.52 2.03

BNZ 2035 0.03 2.03 8.57 0.41

BNZ 2050 0.04 2.09 9.04 0.88



Summary



Conclusions

• We have calculated the additional electrical demand from installing low carbon 
heating systems in 2 communities, in 2035 and 2050 uptake scenarios. These used 
20 archetypes for each community and simulated every half hour of the year (in a 
typical year and a cold year).

• We have analysed the impact of a cold spell on total load in the community and 
evaluated various peak load mitigation strategies:

• Where a ‘switch off’ command is issued, it needs to be for a sustained duration 
to completely avoid the EV peak.

• However, this will cause discomfort to homeowners in the following day.
• Passiv optimisation and coordination can flatten or adjust demand as required 

by the energy centre, whilst simultaneously ensuring no individual house is 
overly cold.



Next steps

• Enhance the modelling scenarios for each of the communities, including 
more detailed housing archetypes, user set points and technology uptake 
rates. 

• Carry out additional scenario runs to identify interactions between energy 
demands, such as heating and EV charging and control signals, and 
dynamic tariffs and requests for flexibility.

• Include assumptions from community groups on preferences for future 
service models, including options for delivering optimal community-based 
flexibility arrangements.


