

Serving the Midlands, South West and Wales

Company Directive

STANDARD TECHNIQUE: SD7A/8

Relating to the Data Sets Used with Windebut Software

Author: Seth Treasure

Implementation Date: July 2019

Approved by

Paul Jewell

DSO Development Manager

Date: 17 July 2010

NOTE: The current version of this document is stored in the WPD Corporate Information Database. Any other copy in electronic or printed format may be out of date.

Copyright © 2019 Western Power Distribution

IMPLEMENTATION PLAN

Introduction

This Standard Technique sets out the text in the background files used in the WINDEBUT LV planning tool.

Main Changes

The maximum loop resistance values defined in Appendix C and D have been updated to reflect changes to ST: SD5R and ST: SD5A.

Impact of Changes

This revision sets out the latest background files in use.

Implementation Actions

Team Managers shall advise Planners and other staff who use Windebut software that this revision has been issued to accompany the roll-out of updated Windebut background files.

Implementation Timetable

This change will be implemented with immediate effect.

REVISION HISTORY

Document Revision & Review Table								
Date	Comments	Author						
July 2019	The required impedance at the end of a main conductor has been amended from 190 to 135 m ohms	Seth Treasure						
January 2018	Appendix C and D have been updated (changes to loop resistance limits)	Andy Hood						
January 2017	Data set for Dbdata.txt updated. Appendix B.	Stephen Davies						
August 2015	The latest text for the following files has been updated in line with those provided by A Hood: Appendix B: - Dbdata.txt Appendix D: - Windebut .ini Appendix E: - dbdconsu.ini Appendix G: - Wdgroups.dat Appendix H: - Edgsetup.dat	Geoff Budd						

INDEX

- 1.0 INTRODUCTION
- 2.0 USING 'DEBDAT.EXE' TO MODIFY DATA USED BY WINDEBUT
- 3.0 PRIVILEGED USER PASSWORD
- 4.0 DEBUT USER GUIDE (VERSION 3.1)
- 5.0 WINDEBUT.INI
- 6.0 LOAD ACCEPTANCE TOOL

APPENDICES

APPENDIX A

Details the variables that can be modified within the Windebut DBDATA.TXT data file.

APPENDIX B

The DBDATA.TXT data set file held within Win31r4 as revised February 2007.

APPENDIX C

Details the variables that can be modified within the WINDEBUT.INI data file.

APPENDIX D

The WINDEBUT.INI data set file held in Win31r4 as revised February 2007. (This file may be modified by Windebut as it runs)

APPENDIX E

The dbdconsu.ini file data set containing definitions of consumer types used in Windebut

APPENDIX F

Trfrupd.ini configuration file points Windebut to where the Transformer search database file is held.

APPENDIX G

Wdgroups.dat file giving details of consumer, transformer and cable groups used in Windebut.

APPENDIX H

Edgsetup.dat file giving details of generator profiles used in Windebut.

1.0 INTRODUCTION

- 1.1 This standard technique will enable updating of the data set held within WinDebut.
- 1.2 The configuration and data files used by Windebut are held in the default directory on C: drive and consist of the following:

•	Dbdata.txt	This file holds all the raw data used by Windebut on
		cables, Transformers and consumers.
•	Dbdata.dta	A compiled version of dbdata.txt as processed by the
		debdat.exe file (See below).
•	Windebut.ini	Contains global defaults for Windebut (See 5.0 and
		appendix D)
•	Trfrupd.ini	This files points Windebut to where the Transformer
		search database file is held.
•	Dbdconsu.ini	This files holds the consumer descriptions as used by
		Windebut
•	Wdgroups.dat	This is a data file holding information on consumer,
		transformer and cable groups.
•	Debut tf.mdb	This is a Microsoft Access version 2 database containing
	_	details of the distribution substations available for the
		transformer search function in Windebut.

2.0 USING "DEBDAT.EXE" TO MODIFY THE DATA USED BY WinDebut

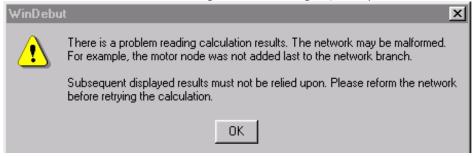
To change any of the data held within WinDebut follow this process:

- Just to be safe copy the contents of DBDATA.TXT to DBDATA.OLD. This will enable disaster recovery should anything go wrong when doing the following.
- 2.2 Open the "DBDATA.TXT" file in a suitable editor (i.e. AMIPRO, Wordpro, Write, MS-Notepad or MS-Word).
- 2.3 Make the required changes to "DBDATA.TXT" and save it using the same file name "DBDATA.TXT".
- 2.4 Run DEBDAT.EXE. This will prompt the user for a file name (i.e. DBDATA.TXT).
- 2.5 Type in the file name; "DBDATA.TXT"; to be used and follow the instructions to overwrite the existing DBDATA.DTA file.
- 2.6 Upon successful completion the "DBDATA.TXT" file is converted to a "DBDATA.DTA" file. The user is told when this process has completed successfully.
- 2.7 Quit the "DEBDAT" program.
- 2.8 WinDebut can now be run with the new data (i.e. using the new "DBDATA.DTA" file).

3.0 PRIVILEGED USER PASSWORD

3.1 To modify WinDebut defaults used within the package there is a "Privileged User" button. The password for this is "ZWinDebut".

4.0 DEBUT USER GUIDE (from version 3.1)


4.1 This document is a comprehensive "DEBUT User Guide". The document is held by Design Policy, the 11kV Design team and Word Processing, Avonbank.

5.0 WINDEBUT.INI

- 5.1 This text file sets the global defaults for Windebut as well as the more specific Urban Rural Defaults.
- 5.2 Urban and Rural Defaults can also be updated using the privileged user password within the package. This method is described in **ST: SD5K**.

6.0 LOAD ACCEPTANCE TOOL

- 6.1 The load acceptance tool is an enhancement in version 2.4k onwards.
- 6.2 The load acceptance tool uses transformer impedance data from Engineering Recommendation P28. This data is 'hard-wired' into Windebut and is slightly different from the impedance data in dbdata.txt because DBDATA takes into account the variation in impedance values of transformers of different ages.
- 6.3 This difference in data may lead to <u>slight</u> discrepancies in the results when using the load acceptance tool.
- 6.4 Windebut Version 2.4.4 release 5 saw additional data added to the P28 data to enable South Wales planners to model three phase GMT transformers used in a split phase configuration. This data is additional to P28 Table D6 and is 'hard-wired' into Windebut.
- 6.5 To avoid problems the motor/welder node should be the last item added to the network. Windebut Version 2.4.4 release 5 saw a feature that brings up an error message if Windebut is run and the motor/welder node is not the last added to the network to enable the user to re-organise the design. (Example shown below)

APPENDIX A

DBDATA.TXT FILE VARIABLES

Variable	Units	Values	Description
Design parameters		<u> </u>	
Maximum volt drop Day	%	4.79	Equivalent to 5% of 230V
Maximum volt drop Night	%	4.79	Equivalent to 5% of 230V
Incremental length to use to taper	metres	50	
Capitalised cost of LV cable losses	£/kW MD	945	Indicative value
Decimal places			1
Phase + Neutral voltage drop	none	2	The number of allowable decimal places for this variable.
Phase to Neutral loop resistance	none	2	The number of allowable decimal places for this variable.
Maximum fault current	none	2	The number of allowable decimal places for this variable.
Maximum current demand	none	2	The number of allowable decimal places for this variable.
Joint costs			
SERVJT	£	174.60	Indicative cost of MSB23 - 185 Wavecon main - 2 x 1ph + 1 x 3ph Sp/Conc services
CABLJT	£	183.52	Indicative cost of MS2 - 185 - 185 Wavecon straight joint
SUBSTJ	£	334.26	Indicative cost of MS2 - 185 Wavecon - indoor termination
TAPEJT	£	173.79	Indicative cost of MB2 - 185 Wavecon Main - 95 Wavecon branch
TEEJT	£	272.93	Indicative cost of MB3 - 300 Wavecon main to 185 Wavecon branch
TRANSX			
Name			GMT = 3 Phase Ground Mounted Transformer PMT = 3 Phase Pole Mounted Transformer PMTSIN = Single Phase Pole Mounted Transformer
COST	£		Indicative cost of a transformer
RATING	kVA		The name plate rating of the transformer
TRANSFORMER LV RESISTANCE	Ohms		LV winding resistance

Variable	Units	Values	Description
TRANSFORMER LV REACTANCE	Ohms		LV winding reactance
IRON LOSSES	Watts		The iron losses of the transformer
CU LOSSES	Watts		The copper losses of the transformer
FUSE RATING	Amps		The maximum fuse rating of the transformer
OUTTEM			1
Day maximum	°C	8	maximum day value
Night minimum	°C	4	minimum night value
HOTSPO – transformer hotspot valu	les (BS7735)		
Maximum temperature	°C	140	
Normal ageing temperature	°C	98	
Hotspot rise	°C	78	
Hotspot to top oil gradient	υС	23	
OIL – transformer oil temperature (BS7735)		
Maximum Top temperature	°C	105	
Top oil rise	С	55	
Exponent constant	constant	0.8	
Time	hours	3	
Top of winding oil rise	°C	55	
LOSSRA			
Pole mounted transformer loss ratio	ratio	8	Ratio of copper losses at nameplate rating to iron losses (copper losses
Ground mounted transformer loss ratio	ratio	8	divided by iron losses)
CCIRON			1
fixed iron losses cost	£/W	2.97	Indicative Capitalised cost of transformer fixed iron and variable

Variable	Units	Values	Description
variable copper losses cost	£/W	0.596	copper losses
LOADIN			1
Maximum cyclic mult	per unit	1.5	
Average enclosure air temperature rise at full load	°C	15	In version 2.0k onwards this is replaced by -3, which has the effect of implementing formula: SQRT(rating/2)
POWERF		0.95	Load power factor
XREGUL		2	Substation excess regulation
CONSUMER DATA			All the consumer types that can be used within the package (see also ST:SD5J)
CABLES (Type)			
cu	metres		Copper underground cable
AL	metres		Aluminium underground cable
CS	metres		CONSAC cable
WC	Metres		WAVECON cable
TR	Metres		'Trydan' Cable
CO	metres		Copper overhead conductor
AO	metres		Aluminium overhead conductor
ABC	metres		Aerial Bundled Conductor
СС	metres		Copper concentric cable
НҮ	metres		Single phase HYBRID cable
SA	metres		SOLIDAL armoured cable
SU	metres		SOLIDAL unarmoured cable
CI	metres		Single core copper cable
Al	metres		Single aluminium copper cable
НҮТ	metres		Three phase HYBRID cable
сст	metres		Three phase copper concentric cable

Variable	Units	Values	Description
SCC	metres		Split copper concentric single phase cable
CABLES	1		
SIZE	imperial (in²) or metric (mm²)		Cross sectional area of cable/conductor
COST	£		Indicative cost per metre
RATING	Amps		Sustained current rating of the cable as per National Eng. Rec. P28 (formally P13/1)&SD8B
OPERATING RESISTANCE PHASE + NEUTRAL	Ohms per 1000 metres		
FAULT RESISTANCE PHASE + NEUTRAL	Ohms per 1000 metres		
FAULT REACTANCE PHASE + NEUTRAL	Ohms per 1000 metres		
DEFAULTS	<u> </u>		
GROUP 1 WC 95 WC 185 WC 300	metres		Selection GROUP 1. LV underground cable default values. All three phase mains cables.
GROUP 2 ABC 50 ABC 95	metres		Selection GROUP 2. LV overhead line default values. 4 core, Three phase plus Neutral
FUSE RATINGS	1		
100, 160, 200, 250, 315, 400, 500 and 630.	Amps		All fuse ratings are to BS88: Part 5
FAULT LEVELS			
MINIMUM FAULT LEVEL	Amps	Variable	Minimum acceptable fault level based on non-adiabatic cable ratings and adiabatic overhead conductor ratings
CONSUMER DATA			

Variable	Units	Values	Description
OFFER/OFGEM profiles created from the ELECTRICITY ASSOCIATION LOAD RESEARCH UNIT data 1998. q values modified to embrace previous SWEB/WPD profiles.			All the consumer load profiles for the differing consumer types that can be used within WinDebut. With the respective "P" followed by "Q" values. i.e. P,Q,P,Q,P,Q,P,Qetc.

DBDATA.TXT FILE:

```
! DBDATA.TXT, Version 3.1.19 12/08/15
! Windebut version 3.1.19 data file
DESIGN PARAMETERS
!MAX V DROP
                  MAX LGTH
                                    CAPITALIZED COST
                  TAPERING
! DAY
         NIGHT
                                     (POUNDS/KW)
! (%)
         (%)
                   (m)
4.79
         4.79
                  100
                          945.0
DECIMAL PLACES
                  MAX MAX MAX
PH-N F. FAULT DEMAND
CURRENT CURRENT CURRENT
!PH+N
         PH+N
! vd
         RES
                            2
JOINT COSTS
! MSB23 - Service joint 185 wavecon main 2 by 1 ph. & 1 by 3 ph.serv. SERVJT 174.60
! MS2 - Straight Joint 185 to 185 3 core wavecon CABLJT 183.52
!7.402 - Indoor termination 3 core 185 wavecon
SUBSIT
                  334.26
! MB2 - Branch Joint 3 core 185 uncut main 95 branch
TAPEJT 173.79
! MB3 - Branch Joint 3 core 300 uncut main 185 branch
TEEJT 272.93
TEEJT
TRANSX
! SOURCE OF THE DATA BELOW
! Southwales TF TEST CERTIFICATES FOR LV RESISTANCE AND REACT. 23/04/02
! PROTECTION POLICY ST: TP4B FOR MAXIMUM FUSE RATING,
! EE SPEC 5: APPENDIX D FOR IRON AND CU LOSS
! WPD VALUES FOR GROUND MOUNTED TRANSFORMERS ARE BELOW
                            TRANSFORMER
                                              TRANSFORMER
                                                   PHASE GMT=1 GUARANTEED MAXIMUM
                                     T/F Type GMT = 1
         T/F Phases
         120 = Three Phase
         0 = Single Phase
                                     PMT = 2
         180 = Split Phase
```

```
! NAME
        COST
               RATING LV RES LV REA PHASE
                                                    TYPE
                                                                              MAX
                                                             FΘ
                                                                     CII
                                                             Losses
                                                                     Losses
                                                                              Fuse
         (£)
                 (A)
                          (OHMS)
                                   (OHMS)
                                                             (W)
                                                                      (W)
                                                                              (A)
        7193.00 1000
                          0.00219 0.00863 120
                                                                      8400
                                                                              500
GMT
                                                    1
                                                             650
         5578.00 800
                          0.00291 0.0107
                                                                              500
                                           120
                                                             510
                                                                      5500
GMT
                                                    1
GMT
        0.00
                 750
                          0.00313 0.0115
                                           120
                                                    1
                                                             1000
                                                                      6300
                                                                              500
        5182.00 500
                          0.00509 0.0171
                                                                      3900
                                                                              400
GMT
                                           120
                                                    1
                                                             360
                          0.00901 0.0268
GMT
        0.00
                 315
                                           120
                                                    1
                                                             600
                                                                      4146
                                                                              315
                          0.00948 0.0281
GMT
        0.00
                 300
                                           120
                                                    1
                                                             520
                                                                      3000
                                                                              315
                          0.0158
GMT
        0.00
                 200
                                   0.0406
                                           120
                                                    1
                                                             417
                                                                      3091
                                                                              250
PMTTRP
        3696.00 315
                          0.0090
                                   0.0268
                                           120
                                                    2
                                                             520
                                                                      3900
                                                                              315
                                                    2
                                                                      2750
PMTTRP
        3305.00 200
                          0.0158
                                   0.0406
                                           120
                                                             356
                                                                              315
                                                                     1750
PMTTRP
        2868.00 100
                          0.0371
                                   0.0810
                                           120
                                                             145
                                                                              200
                                                    2
                          0.0876
                                           120
PMTTRP
        2783.00 50
                                  0.144
                                                             90
                                                                     1100
                                                                              160
PMTTRP
        0.00
                 25
                          0.208
                                   0.266
                                           120
                                                             70
                                                                      636
                                                                              100
        2346.00 100
                          0.01113 0.0255
                                                    2
PMTSTN
                                           0
                                                             174
                                                                     1636
                                                                              315
                                                    2
PMTSIN
        1763.00 50
                          0.0266
                                   0.0496
                                           0
                                                             113
                                                                      973
                                                                              315
                                                    2
PMTSIN
        1649.00 25
                          0.0612
                                   0.0944
                                           0
                                                             65
                                                                      559
                                                                              160
                                                    2
        0.00
                                   0.139
                                           0
                                                                      405
PMTSIN
                 16
                          0.108
                                                             48
                                                                              100
        0.00
                 15
                                   0.146
                                                             73
                                                                      430
                                                                              100
PMTSIN
                          0.118
                                           0
                                   0.206
                                                                              100
                          0.191
                                                    2
PMTSIN
        0.00
                 10
                                           0
                                                             57
                                                                      310
                                                    2
        0.00
                 5
                          0.430
                                   0.362
                                           0
                                                             39
                                                                      175
                                                                              100
PMTSIN
                 1000
                                                                      7139
SPLT
        0.00
                          0.00220 0.0086
                                           180
                                                    1
                                                             1283
                                                                              630
SPLT
        0.00
                 800
                          0.00291 0.0107
                                           180
                                                    1
                                                             1120
                                                                      5913
                                                                              500
SPLT
        0.00
                 750
                          0.00313 0.0115
                                           180
                                                    1
                                                             1000
                                                                      4200
                                                                              500
                 500
                          0.00509 0.0171
                                                    1
                                                             755
SPLT
        0.00
                                           180
                                                                      4141
                                                                              400
        0.00
                 315
                          0.00901 0.0268
                                                             600
                                                                      2764
SPLT
                                           180
                                                    1
                                                                              315
SPLT
        0.00
                          0.00948 0.0281
                                                                      2000
                 300
                                           180
                                                    1
                                                             520
                                                                              315
SPLT
        0.00
                 200
                          0.0158
                                  0.0406
                                           180
                                                    1
                                                             417
                                                                      2061
                                                                              250
SPLT
        1676.00 100
                          0.02225 0.051
                                                    2
                                                             243
                                                                              315
                                           180
                                                                     1636
SPLT
        1301.00 50
                          0.0532
                                   0.0992
                                           180
                                                             113
                                                                      973
                                                                              160
        0.00
                 25
                          0.1124
                                  0.1888
                                           180
                                                             65
                                                                      559
                                                                              100
SPLT
!Outside temperature (deg C)
        Day Max Night Max
OUTTEM
!Hot spot values:
ı
        Max
                 Normal Rise
                                   Top Oil
```

```
Gradient
HOTSPO 140
                 98
                          78
                                  23
!Oil values:
                                  T.CONST Top Winding
        Max
                 Top
                         Exp
        Top
                 Rise
                                           Rise
                         0.8
                                  3
                                           55
OTL
        105
                 55
!Loss ratios:
        PMT
                 GMT
LOSSRA
       10
                 10
```

!Capitalised cost of transformer fixed iron & variable copper losses: Fe(f) CU(f) 2.97 0.596

```
!Loading parameters: Maximum Cyclic Average Enclosure
                ENCLOSURE
        MAX
        CYCLIC
                AIR TEMP RISE
        MULT
                FULL TOAD
                Negative means use sqrt(rating/2)
LOADIN 1.5
```

!Load power factor POWERF 0.95

!Winding exponent WINDIN 1.6

!Substation excess regulation XREGUL 2.0

```
CABLES
         DEBUT CABLE TYPES
          DEBUT
          ABBREVIATION:
                            DESCRIPTION:
                   COPPER UNDERGROUND CONDUCTOR
         CU
                   ALUMINIUM UNDERGROUND CONDUCTOR
          ΑL
          CS
                   CONSAC CONDUCTOR
          WC
                   WAVECON CONDUCTOR
          CO
                   COPPER OVERHEAD CONDUCTOR
          ΑO
                   ALUMINIUM OVERHEAD CONDUCTOR
          ABC
                   AERIAL BUNBLED CONDUCTOR
                   COPPER CONCENTRIC CONDUCTOR
HYBRID CONDUCTOR SINGLE PHASE
         CC
          HY
                   SOLIDAL ARMOURED CONDUCTOR
          SA.
                    SOLIDAL UNARMOURED CONDUCTOR
          SU
                   SINGLE CORE COPPER
SINGLE CORE ALUMINIUM
         CI
          ΑI
                   HYBRID CONDUCTOR, THREE PHASE
COPPER CONCENTRIC CONDUCTOR, THREE PHASE
          HYT
          CCT
                   SPLIT CONCENTRIC COPPER CONCENTRIC SINGLE PHASE 'TRYDAN' OR "ALPEX" CABLE
          SCC
          TR
```

! ! !TYPE !	SIZE	COST	RATING (A)	OPERATING RESISTANCE OPERATING RE PHASE NEUT (OHMS / 1000	TRAL PHASE	ES NEUTRAL	FAULT RI PHASE (OHMS /	FAULT REACTANCE EACT NEUTRAL 1000M)
: ABC ABC ABC AL	50 95 120 0.007 0.0145 0.0225 0.04 0.15 0.25 0.3 0.4 0.5 25 35 50 70 95 120 185 300 0.025 0.0	1.94 3.26 4.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	157 250 328 52 76 84 112 162 216 246 319 391 428 488 112 135 162 202 262 283 391 520 152 250 351 453 453 453 250 351 453 250 351 452 250 250 250 250 250 250 250 250 250 2	0.6410 0.64 0.3200 0.32 0.2530 0.25 6.5703 6.57 3.1441 3.14 2.0800 2.08 1.1600 1.16 0.7670 0.76 0.4560 0.45 0.3120 0.31 0.2340 0.25 0.1870 0.18 0.1520 0.15 0.1130 0.13 0.0923 0.05 1.2000 1.20 0.8680 0.86 0.8500 0.85 0.4430 0.44 0.3200 0.32 0.1640 0.16 0.1000 0.10 1.0880 1.08 0.5420 0.54 0.3600 0.36 0.2700 0.27 0.1826 0.18 1.0640 1.06 0.5420 0.54	110	0.6410 0.3200 0.2530 6.5703 3.1441 2.0800 1.1600 0.7670 0.4560 0.3120 0.1870 0.1520 0.1130 0.0923 1.2000 0.8680 0.8500 0.4430 0.32530 0.1640 0.1000 1.0880 0.5420 0.1820 0.1820 0.1820 0.1920 0	0.0840 0.0770 0.0680 0.1006 0.0896 0.0864 0.0787 0.0755 0.0733 0.0700 0.0689 0.0678 0.0678 0.0678 0.0745 0.0745 0.0745 0.0745 0.0745 0.0745 0.0745 0.07680 0.0680 0.0680 0.0680 0.0670 0.2970 0.2970 0.2970 0.2970	0.0840 0.0770 0.0680 0.1006 0.0896 0.0864 0.0787 0.0755 0.0733 0.0700 0.0689 0.0689 0.0678 0.0678 0.0678 0.0745 0.07680 0.0680 0.0680 0.0680 0.0670 0.2970 0.2970 0.2970 0.2970 0.2970
AO AO	100 150	0.66 2.00	349 450	0.2700 0.27 0.1830 0.18		0.2700 0.1830	0.2760 0.2600	0.2760 0.2600

CC	16	1.85	134	1.1500	1.2000	1.1500	1.2000	0.0790	0.0790
CC	25 35	2.42 3.21	173 212	0.7270 0.4980	0.7600 0.4650	0.7270 0.4980	0.7600 0.4650	0.0780 0.0760	0.0780 0.0780
CCT	16 25	4.31	118 154	1.1500 0.7270	1.2000 0.7600	1.1500 0.7270	1.2000 0.7600	0.0880	0.0880 0.0870
CCT	35	5.45 8.00	205	0.5150	0.4890	0.5150	0.4890	0.0870 0.0760	0.0780
CO CO	0.007 0.0225	0.00	58 135	3.9700 1.2309	3.9700 1.2309	3.9700 1.2309	3.9700 1.2309	0.0996 0.3287	0.0996 0.3287
CO	0.025	0.00	147	1.0800	1.0800	1.0800	1.0800	0.3470	0.3470
CO CO	0.05 0.058	0.00	221 217	0.5410 0.4627	0.5410 0.4627	0.5410 0.4627	0.5410 0.4627	0.3250 0.2899	0.3250 0.2899
CO CO	0.06 0.1	0.00	226 330	0.4627 0.2590	0.4627 0.2590	0.4627 0.2590	0.4627 0.2590	0.2899 0.2890	0.2899
CO	0.15	0.00	419	0.1760	0.1760	0.1760	0.1760	0.2780	0.2780
CO CO	16 25	0.85 1.21	145 188	1.0800 0.6836	1.0800 0.6836	1.0800 0.6836	1.0800 0.6836	0.3105	0.3470 0.3105
CO CO	32 70	1.54 3.24	199 338	0.5410 0.2588	0.5410 0.2588	0.5410 0.2588	0.5410 0.2588	0.3250 0.2890	0.3250 0.2890
CO CS	100 70	5.10 0.00	434 209	0.1763 0.4430	0.1763 0.3860	0.1763 0.4430	0.1763 0.3860	0.2780 0.0705	0.2780 0.0705
CS	95	0.00	259	0.3200	0.3100	0.3200	0.3100	0.0690	0.0690
CS CS	120 150	0.00	332 344	0.2530 0.2060	0.2420	0.2530 0.2060	0.2420	0.0685 0.0685	0.0685
CS	185 240	0.00	379 491	0.1640 0.1250	0.1640 0.1250	0.1640 0.1250	0.1640 0.1250	0.0685	0.0685
CS CS	300	0.00	538	0.1000	0.1000	0.1000	0.1000	0.0675	0.0675
CU CU	0.007 0.0145	0.00	58 87	3.9700 1.9020	3.9700 1.9020	3.9700 1.9020	3.9700 1.9020	0.0996 0.0907	0.0996 0.0907
CU CU	0.0225 0.025	0.00	111 118	1.2600 1.2600	1.2600 1.2570	1.2600 1.2600	1.2600 1.2570	0.0864 0.0860	0.0864 0.0860
CU	0.04	0.00	156	0.7020	0.7020	0.7020	0.7020	0.0787	0.0787
CU CU	0.05 0.06	0.00	178 228	0.5830 0.4640	0.5440 0.4640	0.5830 0.4640	0.5440 0.4640	0.0760 0.0755	0.0780 0.0755
CU CU	0.1 0.15	0.00	283 344	0.2760 0.1880	0.2760 0.1880	0.2760 0.1880	0.2760 0.1880	0.0733	0.0733
CU	0.2	0.00	396	0.1420	0.1420	0.1420	0.1420	0.0689	0.0689
CU CU	0.25	0.00	447 510	0.1130 0.0920	0.1130 0.0920	0.1130 0.0920	0.1130 0.0920	0.0689 0.0678	0.0689 0.0678
CU CU	0.4	0.00	593 671	0.0684 0.0558	0.0684 0.0558	0.0684 0.0558	0.0684 0.0558	0.0678 0.0667	0.0678 0.0667
CU	0.6	0.00	712	0.0473	0.0473	0.0473	0.0473	0.0661	0.0661
CU CU	0.75 16	0.00 0.71	938 111	0.0397 1.1500	0.0397 1.1500	0.0397 1.1500	0.0397 1.1500	0.0656 0.0805	0.0656 0.0805
CU CU	25 35	0.98 1.29	147 178	0.6730 0.5240	0.6730 0.5240	0.6730 0.5240	0.6730 0.5240	0.0790 0.0745	0.0790 0.0745
CU	70	0.00	266	0.2680	0.2680	0.2680	0.2680	0.0710	0.0710
CU CU	95 120	0.00	344 371	0.1990 0.1530	0.1990 0.1530	0.1990 0.1530	0.1990 0.1530	0.0700 0.0680	0.0700 0.0680
CU CU	185 300	0.00	510 671	0.0991 0.0601	0.0991 0.0601	0.0991 0.0601	0.0991 0.0601	0.0680 0.0670	0.0680 0.0670
CU	400	0.00	712	0.0488	0.0488	0.0488	0.0488	0.0670	0.0670
HY HY	25 35	1.05 1.55	131 158	1.2000 0.8680	1.2000 0.7600	1.2000 0.8680	1.2000 0.7600	0.0790 0.0750	0.0400 0.0330
HYT HYT	25 35	2.11 2.59	117 141	1.2000 0.8680	1.2000 0.7600	1.2000 0.8680	1.2000 0.7600	0.0790 0.0750	0.0860 0.0750
SA	480	0.00	661	0.0633	0.0633	0.0633	0.0633	0.0835	0.0835
SA SA	600 740	8.35 11.08	672 783	0.0560 0.0460	0.0560 0.0460	0.0560 0.0460	0.0560 0.0460	0.0900 0.0900	0.0900 0.0900
SA SA	960 1200	0.00	969 1160	0.0343	0.0343	0.0343 0.0280	0.0343 0.0560	0.0812 0.0450	0.0812 0.0450
SA	1480 1800	0.00	1260 1560	0.0230	0.0460 0.0280	0.0230 0.0187	0.0460 0.0280	0.0450 0.0300	0.0900
SA SA	2220	0.00	1680	0.0187 0.0153	0.0230	0.0153	0.0230	0.0300	0.0450 0.0450
SCC SCC	16 25	3.07 3.50	138 178	1.1500 0.7270	1.2000 0.7600	1.1500 0.7270	1.2000 0.7600	0.0780 0.0780	0.0780 0.0780
SCC SCCT	35 25	2.39	212 181	0.5150 0.7270	0.4890 0.7600	0.5150 0.7270	0.4890 0.7600	0.0760 0.0780	0.0780 0.0780
SCCT	35	2.39	205	0.7270	0.4890	0.7270	0.4890	0.0760	0.0780

TR	70	3.75	212	0.4430	0.4430	0.4430	0.4430	0.0755	0.0152
TR	95	0.00	254	0.3200	0.3200	0.3200	0.3200	0.0735	0.0155
TR	120	0.00	290	0.2530	0.2530	0.2530	0.2530	0.0730	0.0153
TR	150	0.00	344	0.2060	0.2060	0.2060	0.2060	0.0740	0.0150
TR	185	0.00	373	0.1640	0.1640	0.1640	0.1640	0.0740	0.0140
TR	240	0.00	460	0.1250	0.1640	0.1250	0.1640	0.0730	0.0123
TR	300	0.00	500	0.1000	0.1640	0.1000	0.1640	0.0725	0.0108
WC	35	0.00	141	0.9390	0.9390	0.9390	0.9390	0.0820	0.0820
WC	95	6.13	279	0.3200	0.3200	0.3200	0.3200	0.0735	0.0155
WC	185	11.38	407	0.1640	0.1640	0.1640	0.1640	0.0740	0.0140
WC	300	14.25	538	0.1000	0.1640	0.1000	0.1640	0.0725	0.0108

DEFAULTS

!LV UNDERGROUND CABLE

WC 185 WC 300

!LV OVERHEAD LINE

ABC 50 ABC 95 ABC 120 AO 50 AO 100

FUSE RATINGS 100 160 200 250 315 355 400 500 630

FAULT LEVELS

!BASED NON-ADIABTIC RATING OF CABLES AND ADIABATIC RATING OF OVERHEAD LINES:

!FUSE R	RATINGS:		100	160	200	250	315	355	400	500	630
!COND. !TYPE	COND. SIZE	MAX FUSE	MINIMUM (A)	FAULT (A)	LEVEL: (A)	(A)	(A)	(A)	(A)	(A)	(A)
			(A) 298 298 298 186 186 186 186 298 298 298 298 298 298 298	(A) 517 517 517 290 290 290 290 517 517 517 517 517 517 517 517 517 517		1099 848 848 470 470 470 470 954 848 848 848 848 848 848 8470 470 1117	1710 1032 1032 575 575 575 575 575 1416 1032 1032 1032 1032 1032 1032 1032 1032	(A) 2270 1437 1255 667 667 667 1907 1431 1255 1255 1255 1255 1255 1255	3164 1877 1577 776 776 776 776 776 2539 1871 1526 1454 1454 1454 1454 776 776	6939 3132 2622 981 981 981 981 4658 3151 2501 2087 1903 1903 1903 981 981	(A) 30000 5510 3416 1244 1244 1244 1244 7870 5570 3461 3358 2901 2446 2446 1244 1244 1244 1244 1244
AL AL AL AO CC CC	70 95 120 185 300 0.025 0.06 0.075 0.1 0.15 25 50 100 150 16 25	630 630 630 630 630 630 630 630 630 630	298 298 298 298 298 298 298 298 298 298	517 517 517 517 517 517 638 517 517 517 517 517 517 517 517 517 517	661 661 661 661 944 661 661 661 661 944 661 661 369 369	909 848 848 848 1470 944 872 848 848 1470 944 848 470 470	1765 1322 1032 1032 1032 1032 2342 1357 1180 1032 1032 2342 1357 1032 2575 575	1806 1454 1255 1255 1255 3238 1800 1628 1416 1255 1255 3238 1800 1255 1255 667 667	3284 2442 1924 1637 1454 1454 4450 2388 2090 1814 1511 1454 4450 2388 1511 1454 776 776	4330 3229 2683 1903 1903 30000 4158 3476 2945 2388 1903 30000 4158 2388 1903 981 981	7626 5659 3436 3149 2446 30000 7406 5976 4625 3484 2748 30000 7406 3484 2748 1244
CC CCT CCT	35 16 25 35	630 630 630 630	186 186 186 186	290 290 290 290	369 369 369 369	470 470 470 470	575 575 575 575	667 667 667 667	776 776 776 776	981 981 981 981	1244 1244 1244 1244

CO	0.007	100	298	30000	30000	30000	30000	30000	30000	30000	30000
CO	0.0225	400	298	687	1014	1604	2596	3671	5016	30000	30000
CO CO	0.025	400 400 630	298 298	641 517	959 661	1478 965	2364 1365	3254 1824	4533 2413	30000 30000 4180	30000 7477
CO	0.058	630	298	517	661	863	1188	1638	2115	3492	5916
CO		630	298	517	661	863	1188	1638	2115	3492	5916
CO	0.1	630	298	517	661	848	1032	1255	1526	2394	3486
CO		630	298	517	661	848	1032	1255	1454	1903	2804
CO	16	400	298	647	964	1439	2405	3339	4572	30000	30000
CO	25	500	298	517	750	1100	1678	2224	3012	6092	30000
CO	32	630	298	517	661	960	1408	1852	2438	4295	7626
CO	70	630	298	517	661	848	1032	1255	1454	2286	3492
CO	100	630	298	517	661	848	1032	1255	1454	1903	2772
CS	70	630	298	517	661	906	1322	1806	2422	4330	7626
CS	95	630	298	517	661	848	1032	1454	1924	3229	5659
CS	120	630	298	517	661	848	1032	1255	1637	2683	3436
CS	150	630	298	517	661	848	1032	1255	1454	2188	3401
CS	185	630	298	517	661	848	1032	1255	1454	1903	3149
CS	240	630	298	517	661	848	1032	1255	1454	1903	2446
CS	300	630	298	517	661	848	1032	1255	1454	1903	2446
CU	0.007	630	186	290	369	470	575	667	776	981	1244
CU	0.0145	630	186	290	369	470	575	667	776	981	1244
CU	0.0225	630	186	290	369	470	575	667	776	981	1244
CU		630	186	290	369	470	575	667	776	981	1244
CU	0.04	630	186	290	369	470	575	667	776	981	1244
CU		630	186	290	369	470	575	667	776	981	1244
CU	0.06	630	298	517	661	1005	1532	2054	2774	5464	9426
CU	0.1	630	298	517	661	848	1032	1431	1874	3136	5529
CU	0.15	630	298	517	661	848	1032	1255	1454	2264	3505
CU		630	298	517	661	848	1032	1255	1454	1903	2882
CU	0.25	630	298	517	661	848	1032	1255	1454	1903	2446
CU		630	298	517	661	848	1032	1255	1454	1903	2446
CU	0.4	630	298	517	661	848	1032	1255	1454	1903	2446
CU		630	298	517	661	848	1032	1255	1454	1903	2446
CU	0.6	630	298	517	661	848	1032	1255	1454	1903	2446
CU	0.75	630	298	517	661	848	1032	1255	1454	1903	2446
CU	16	630	186	290	369	470	575	667	776	981	1244
CU	25	630	186	290	369	470	575	667	776	981	1244
CU	35	630	186	290	369	470	575	667	776	981	1244
CU	70	630	298	517	661	848	1032	1375	1772	2987	5049
CU	95	630	298	517	661	848	1032	1255	1454	2325	3497
CU	120	630	298	517	661	848	1032	1255	1454	1955	2446
CU	185	630	298	517	661	848	1032	1255	1454	1903	2446
CU	300	630	298	517	661	848	1032	1255	1454	1903	2446
CU	400	630	298	517	661	848	1032	1255	1454	1903	2446
HY	25	630	186	290	369	470	575	667	776	981	1244
HY	35	630	186	290	369	470	575	667	776	981	1244
HYT	25	630	186	290	369	470	575	667	776	981	1244
HYT	35	630	186	290	369	470	575	667	776	981	1244
SA	480	630	298	517	661	848	1032	1255	1454	1903	2446
SA	600	630	298	517	661	848	1032	1255	1454	1903	2446
SA	740	630	298	517	661	848	1032	1255	1454	1903	2446
SA	960	630	298	517	661	848	1032	1255	1454	1903	2446
SA	1200	630	298	517	661	848	1032	1255	1454	1903	2446
SA	1480	630	298	517	661	848	1032	1255	1454	1903	2446
SA	1800	630	298	517	661	848	1032	1255	1454	1903	2446
SA	2220	630	298	517	661	848	1032	1255	1454	1903	2446
SCC	16	630	186	290	369	470	575	667	776	981	1244
SCC	25	630	186	290	369	470	575	667	776	981	1244
SCC	35	630	186	290	369	470	575	667	776	981	1244
SCCT	25	630	186	290	369	470	575	667	776	981	1244
SCCT	35	630	186	290	369	470	575	667	776	981	1244
TR	70	630	298	517	661	848	1032	1405	1863	3203	5729
TR	95	630	298	517	661	848	1032	1255	1454	2474	3461
TR	120	630	298	517	661	848	1032	1255	1454	2921	3358
TR	150	630	298	517	661	848	1032	1255	1454	1903	2446
TR	185	630	298	517	661	848	1032	1255	1454	1903	2446
TR	240	630	298	517	661	848	1032	1255	1454	1903	2446
TR	300	630	298	517	661	848	1032	1255	1454	1903	2446
WC	35	630	186	290	369	470	575	667	776	981	1244
WC	95	630	298	517	661	848	1032	1255	1510	2587	3413
WC	185	630	298	517	661	848	1032	1255	1454	1903	2446
WC	300	630	298	517	661	848	1032	1255	1454	1903	2446

CONSUMERS

ONE !Based	on EATL	Profile	URMC						
0.08 0.04 0.046 0.247 0.200 0.176 0.166 0.336 0.275 0.213 0.369 0.000	0.122 0.074 0.096 0.276 0.258 0.222 0.202 0.249 0.203 0.187 0.309 0.000	0.06 0.04 0.052 0.27 0.192 0.162 0.179 0.334 0.278 0.168 0.351 0.000	0.099 0.077 0.097 0.272 0.245 0.200 0.199 0.241 0.205 0.185 0.302 0.000	0.049 0.037 0.073 0.22 0.181 0.156 0.229 0.305 0.277 0.118 0.000 0.000	0.089 0.072 0.14 0.249 0.243 0.195 0.235 0.218 0.206 0.162 0.000 0.000	0.042 0.039 0.121 0.203 0.188 0.142 0.296 0.296 0.269 0.371 0.000 0.000	0.079 0.073 0.205 0.249 0.248 0.191 0.268 0.219 0.198 0.299 0.000 0.000	0.041 0.042 0.173 0.213 0.203 0.152 0.328 0.283 0.257 0.387 0.000 0.000	0.079 0.074 0.264 0.258 0.239 0.197 0.270 0.215 0.192 0.268 0.000
TWO !Based	on EATL	Profile	ELECAR						
1.014 1.046 0.659 0.428 0.296 0.194 0.292 0.568 0.516 0.350 0.355 0.000	0.300 0.332 0.230 0.272 0.309 0.217 0.289 0.229 0.222 0.364 0.274 0.000	1.146 1.085 0.541 0.320 0.348 0.194 0.317 0.552 0.531 0.300 0.342 0.000	0.339 0.261 0.302 0.227 0.302 0.274 0.339 0.258 0.194 0.364 0.145 0.000	1.078 1.063 0.423 0.323 0.285 0.214 0.402 0.571 0.494 0.45 0.000	0.311 0.248 0.338 0.221 0.230 0.259 0.338 0.241 0.231 0.500 0.000	1.093 1.074 0.378 0.286 0.256 0.23 0.451 0.559 0.46 0.377 0.000 0.000	0.336 0.178 0.384 0.172 0.216 0.253 0.319 0.308 0.229 0.399 0.000 0.000	1.068 0.903 0.488 0.267 0.247 0.302 0.512 0.543 0.400 0.351 0.000	0.321 0.196 0.250 0.229 0.300 0.283 0.382 0.306 0.364 0.292 0.000 0.000
THREE !Based	on EATL	Profile	SSHOP						
0.064 0.055 0.056 0.175 0.452 0.447 0.402 0.225 0.096 0.080 0.447 0.000	0.064 0.055 0.056 0.175 0.452 0.447 0.402 0.225 0.096 0.080 0.447 0.000	0.062 0.056 0.057 0.221 0.458 0.412 0.395 0.157 0.091 0.075 0.412 0.000	0.062 0.056 0.057 0.221 0.458 0.412 0.395 0.157 0.091 0.075 0.412 0.000	0.06 0.056 0.071 0.308 0.459 0.401 0.391 0.124 0.087 0.073 0.000	0.06 0.056 0.071 0.308 0.459 0.401 0.391 0.124 0.087 0.073 0.000	0.06 0.055 0.112 0.393 0.455 0.409 0.375 0.108 0.083 0.455 0.000	0.06 0.055 0.112 0.393 0.455 0.409 0.375 0.108 0.083 0.455 0.000	0.057 0.057 0.151 0.432 0.451 0.410 0.318 0.100 0.082 0.451 0.000 0.000	0.057 0.057 0.151 0.432 0.451 0.410 0.318 0.100 0.082 0.451 0.000 0.000
FOUR !Based	on EATL	Profile	NSHOP						
0.922 1.072 0.727 0.206 0.533 0.526 0.473 0.265 0.113 0.094 0.526 0.000	0.536 0.452 0.410 0.206 0.533 0.526 0.473 0.265 0.114 0.094 0.526 0.000	1.080 1.012 0.666 0.260 0.539 0.485 0.465 0.107 0.088 0.485 0.000	0.567 0.451 0.498 0.260 0.539 0.485 0.465 0.107 0.088 0.485 0.000	1.112 0.944 0.609 0.363 0.541 0.472 0.460 0.146 0.103 0.086 0.000 0.000	0.526 0.454 0.467 0.363 0.541 0.472 0.460 0.146 0.103 0.086 0.000 0.000	1.121 0.873 0.493 0.463 0.535 0.481 0.442 0.127 0.098 0.535 0.000 0.000	0.501 0.453 0.846 0.463 0.535 0.481 0.442 0.127 0.098 0.535 0.000 0.000	1.113 0.795 0.178 0.509 0.531 0.483 0.374 0.117 0.096 0.531 0.000 0.000	0.481 0.421 0.178 0.509 0.531 0.483 0.374 0.117 0.096 0.531 0.000 0.000

FIVE !ELEXON	PROFILE	5	<20% Lo	ad Facto	r				
0.072 0.071 0.072 0.242 0.492 0.468 0.417 0.174 0.068 0.063 0.066 0.000	0.174 0.251 0.174 0.472 0.651 0.199 0.248 0.273 0.333 0.217 0.425 0.000	0.069 0.076 0.082 0.348 0.504 0.449 0.395 0.112 0.069 0.062 0.064 0.000	0.181 0.121 0.197 0.151 0.586 0.134 0.241 0.233 0.315 0.152 0.411 0.000	0.069 0.073 0.110 0.437 0.513 0.433 0.369 0.093 0.059 0.066 0.000	0.317 0.127 0.179 0.151 0.467 0.134 0.255 0.195 0.271 0.188 0.000 0.000	0.067 0.071 0.125 0.490 0.513 0.442 0.318 0.085 0.058 0.072 0.000	0.320 0.110 0.387 0.550 0.351 0.219 0.329 0.302 0.206 0.559 0.000	0.069 0.072 0.169 0.505 0.487 0.437 0.250 0.074 0.059 0.068 0.000	0.318 0.130 0.429 0.653 0.306 0.253 0.271 0.326 0.203 0.519 0.000
SIX !ELEXON	PROFILE	6	20% to	30% Load	Factor				
0.073 0.076 0.081 0.192 0.365 0.355 0.337 0.220 0.108 0.083 0.125 0.000	0.061 0.063 0.062 0.241 0.103 0.096 0.114 0.141 0.136 0.087 0.112 0.000	0.071 0.078 0.085 0.242 0.363 0.351 0.327 0.176 0.101 0.075 0.124 0.000	0.057 0.064 0.058 0.088 0.103 0.092 0.132 0.141 0.143 0.083 0.125 0.000	0.073 0.078 0.105 0.301 0.364 0.346 0.315 0.145 0.094 0.074 0.000	0.060 0.067 0.087 0.081 0.087 0.096 0.141 0.116 0.152 0.074 0.000 0.000	0.072 0.080 0.125 0.347 0.361 0.344 0.296 0.130 0.089 0.123 0.000	0.059 0.066 0.221 0.098 0.085 0.105 0.132 0.143 0.159 0.264 0.000 0.000	0.074 0.080 0.159 0.357 0.359 0.343 0.269 0.119 0.087 0.124 0.000 0.000	0.061 0.060 0.230 0.119 0.089 0.103 0.139 0.116 0.134 0.145 0.000
SEVEN !ELEXON	PROFILE	7	30% to	40% Load	Factor				
0.103 0.100 0.105 0.174 0.255 0.255 0.241 0.203 0.152 0.119 0.147 0.000	0.046 0.043 0.045 0.078 0.053 0.049 0.058 0.088 0.066 0.068 0.092 0.000	0.102 0.102 0.108 0.203 0.256 0.256 0.240 0.192 0.149 0.114 0.149 0.000	0.044 0.042 0.044 0.079 0.048 0.049 0.056 0.095 0.066 0.052 0.078 0.000	0.103 0.101 0.124 0.228 0.256 0.250 0.235 0.178 0.144 0.109 0.000 0.000	0.041 0.041 0.046 0.057 0.045 0.053 0.057 0.127 0.078 0.047 0.000 0.000	0.102 0.102 0.138 0.240 0.257 0.247 0.227 0.169 0.131 0.156 0.000 0.000	0.041 0.043 0.056 0.058 0.047 0.052 0.055 0.093 0.088 0.126 0.000	0.100 0.102 0.152 0.251 0.255 0.244 0.213 0.162 0.126 0.148 0.000 0.000	0.042 0.044 0.075 0.054 0.047 0.054 0.076 0.089 0.143 0.000 0.000
EIGHT !ELEXON	PROFILE	8	>40% Lo	ad Facto	r				
0.123 0.118 0.120 0.152 0.173 0.178 0.171 0.170 0.157 0.132 0.148 0.000	0.031 0.037 0.034 0.029 0.041 0.031 0.038 0.028 0.038 0.072 0.065 0.000	0.121 0.117 0.121 0.159 0.174 0.176 0.171 0.167 0.151 0.130 0.148 0.000	0.030 0.037 0.030 0.031 0.042 0.030 0.038 0.030 0.041 0.051 0.055 0.000	0.119 0.117 0.128 0.165 0.176 0.175 0.172 0.165 0.145 0.125 0.000	0.031 0.037 0.031 0.037 0.037 0.030 0.040 0.030 0.049 0.031 0.000 0.000	0.120 0.119 0.132 0.170 0.179 0.173 0.173 0.163 0.141 0.148 0.000 0.000	0.037 0.038 0.031 0.040 0.034 0.037 0.031 0.062 0.049 0.000	0.119 0.119 0.141 0.172 0.178 0.171 0.172 0.161 0.136 0.149 0.000 0.000	0.037 0.037 0.031 0.040 0.033 0.040 0.031 0.033 0.066 0.057 0.000

HOTPUB !Based	on EATL	Profiles	HOTEL	and PUBH					
0.111 0.088 0.086 0.204 0.188 0.265 0.160 0.236 0.263 0.263 0.265 0.000	0.111 0.088 0.086 0.204 0.188 0.265 0.160 0.236 0.263 0.228 0.265 0.000	0.102 0.090 0.092 0.209 0.199 0.267 0.157 0.251 0.263 0.177 0.267 0.000	0.102 0.090 0.092 0.209 0.199 0.267 0.157 0.251 0.263 0.177 0.267 0.000	0.093 0.088 0.088 0.208 0.224 0.243 0.165 0.270 0.262 0.134 0.000 0.000	0.093 0.088 0.088 0.208 0.224 0.243 0.165 0.270 0.262 0.134 0.000 0.000	0.088 0.088 0.119 0.200 0.242 0.216 0.180 0.271 0.255 0.242 0.000 0.000	0.088 0.088 0.119 0.200 0.242 0.216 0.180 0.271 0.255 0.242 0.000 0.000	0.085 0.088 0.181 0.193 0.263 0.181 0.206 0.267 0.248 0.263 0.000 0.000	0.085 0.088 0.181 0.193 0.263 0.181 0.206 0.267 0.248 0.263 0.000 0.000
CHURCH !Based	on EATL	Profile	Church						
0.027 0.026 0.026 0.057 0.416 0.133 0.207 0.134 0.647 0.062 0.692 0.000	0.027 0.026 0.026 0.057 0.416 0.133 0.207 0.134 0.647 0.062 0.692	0.025 0.024 0.025 0.077 0.396 0.144 0.179 0.242 0.562 0.041 0.654 0.000	0.025 0.024 0.025 0.077 0.396 0.144 0.179 0.242 0.562 0.041 0.654 0.000	0.025 0.025 0.027 0.086 0.349 0.181 0.115 0.418 0.422 0.038 0.000 0.000	0.025 0.025 0.027 0.086 0.349 0.181 0.155 0.418 0.422 0.038 0.000 0.000	0.025 0.024 0.029 0.299 0.318 0.204 0.11 0.633 0.28 2.159 0.000 0.000	0.025 0.024 0.029 0.299 0.318 0.204 0.11 0.633 0.28 2.159 0.000 0.000	0.026 0.026 0.05 0.412 0.171 0.209 0.123 0.651 0.162 1.365 0.000	0.026 0.026 0.050 0.412 0.171 0.209 0.123 0.651 0.162 1.365 0.000
ECOTEN! Econon	ny 10 pr	ofile e.g	. elect	ric flow	boiler				
0.254 0.682 0.154 0.447 0.347 0.801 0.649 0.541 0.750 0.372 0.801 0.000	0.254 0.682 0.154 0.477 0.347 0.801 0.649 0.541 0.750 0.372 0.801 0.000	0.203 0.683 0.155 0.410 0.342 0.751 0.450 0.543 0.708 0.336 0.751 0.000	0.203 0.683 0.155 0.410 0.342 0.751 0.450 0.543 0.708 0.336 0.751 0.000	0.658 0.697 0.199 0.356 0.348 0.714 0.450 0.550 0.672 0.318 0.000 0.000	0.658 0.697 0.199 0.356 0.348 0.714 0.450 0.550 0.672 0.318 0.000 0.000	0.655 0.710 0.271 0.348 0.367 0.706 0.481 0.600 0.429 0.367 0.000 0.000	0.655 0.710 0.271 0.348 0.367 0.706 0.481 0.600 0.429 0.367 0.000 0.000	0.654 0.710 0.365 0.344 0.383 0.658 0.532 0.788 0.401 0.383 0.000 0.000	0.654 0.710 0.365 0.344 0.383 0.658 0.532 0.788 0.401 0.383 0.000 0.000
CONST !Flat F	Profile	Load Fact	tor 100	%					
1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0

WELDER

1.000 1.000

MOTOR

1.000 1.000

STOP

WINDEBUT.INI VARIABLES:

Comments - Comment lines start with a semi-colon. These may be used to

supply addition information to anyone likely to be editing the file

Section Heading Different sections are given headings enclosed in square

brackets

Variablename = Setting Entries have this form.

The following Table describes the Variable Names Entries Used:

Phase_Angle=120	This is the default values used where the phase angle is required, this is linked to the number of phases
No_of_Phases=3	This is the default values used where the number of phases is required
PrintDefault=Yes	Determines if default values are shown in the output file
PrintConsumers=No	This outputs information about the number of consumers of each type present in the study plus the program data from the program data file
PrintColumn132=Yes	This defines the number of characters printed across the page on the printout
IECSIZE=Yes	Enables checking of transformer sizing against BS7735
FULLLOSS=Yes	If yes, this will carry out full loss calculations
XREG=Yes	This instructs Windebut to calculate voltage regulation on all transformers
DMOT=8	Day Maximum outside temperature °C Used by the BS7735 calculation to calculate the expected oil temperature rise (using cyclic loading data) of the transformer.
NMOT=4	Night Minimum outside temperature °C Used by the BS7735 calculation to calculate the expected oil temperature rise (using cyclic loading data) of the transformer.
[Results]	
Show Cost=No	This enables cost information to be shown in results
[WinDebut]	
OutputDirectory=C:\WIN314	This is the default directory which appears when you request a debut analysis
NetworkDirectory=C:\WIN314\DESIG NS	This is the directory where all Windebut files reside
PrivilegedUser=Yes	Yes means the user is a privileged user, No indicates a standard user

Maximised=Yes	This defines whether the screen is maximised on start up of Windebut
ShowNodeEditor=Yes	This gives the user the option to disable the node options of voltage drop selection and fuse override
ShowDisclaimerScreen=Yes	This gives the user the option of seeing the disclaimer screen on Windebut start up
OptionsEditableByPrivilegedUserOnly =No	If yes, this enables only privileged users to change options within Windebut
OutputForEGD=No	This enables another output file (Debut.op) to be produced for use with other software not provided.
Can Load Different DBDATA Files?=No	This provides the facility to change the dbdata.dta file from within the application
DBDATA Path=C:\WIN314\dbdata.dta	This details the location of the dbdata.dta file
Alter INI File?=Yes	This enables the user to access and alter the configuration file from within the application

[Menu]	
PrintLarge=Yes	This defines whether the network is enlarged to
3 3 3 3	fit the printed sheet
PrintKey=Yes	This defines whether the key for the network is
,	displayed on the printed sheet
PrintColumn=Yes	This defines whether the results are displayed in
	a column on the left hand side of the sheet or as
	seen on the screen
VoltDropByNodes=Yes	This defines whether by default volt drops are
Voltaropayitodes Tes	shown by the nodes on the results screen
FullNodeDetails=Yes	This defines whether by default full node details
TullivoucDetails=Tes	are given with the results
VoltDropByNodesPrinter=Yes	This defines whether by default volt drops are
VoltbropbyNodesFiliter=Tes	shown by the nodes on the printed results sheet
ShowCableDataOnTheDiagram=Yes	This defines whether by default cable data is
ShowcableDataOffffleDlagfaff-Tes	shown on the results diagram
ShowCableDataOnThePrinter=Yes	This defines whether by default cable data is
ShowcableDataOffffleFfffter - fes	shown on the printed results diagram
[Urban Defaults]	shown on the printed results diagram
Fuse Flag=Yes	This defines whether the fuse flag is checked as
ruse_riag=res	default. If it is, then Windebut checks whether
	<u> </u>
	there is a fusing override at the first node out from the substation
Fuse val-1 OF	
Fuse_val=1.05	This is the safety margin used fro fuse ratings
Volt_drop0=4.79	This is the maximum day volt drop in %
Volt_drop1=4.79	This is the maximum night volt drop in % This option allows service cables to be discounted
SRIGNOR=0	from Debut calculations. In the rural/urban
	defaults there are three ignore check boxes.
	If all three are to be taken into consideration,
	then none will be checked and SRIGNOR=0, If Voltage drop across services is to be ignored
	only then SRIGNOR=1
	If Loop resistance of services is to be ignored only
	then SRIGNOR=2
	If Fault resistance/reactance of services is to be ignored only then SRIGNOR=4
	If Voltage drop across services and Loop
	resistance of services is to be ignored then
	SRIGNOR=3 If Voltage drop across services and Fault
	resistance/reactance of services is to be ignored
	then SRIGNOR=5
	If Loop resistance of services and Fault
	resistance/reactance of services is to be ignored then SRIGNOR=6
	If Voltage drop across services, Loop resistance of
	services and Fault resistance/reactance of
	services is to be ignored then SRIGNOR=7
Loop_Resistance_Flag=Yes	This defines whether the loop resistance flag is checked by default when 'no services' is selected

Loop_Resistance=135	This defines the default value for loop resistance
	when 'no services' is selected (As per ST:SD5K)
Loads_Only=No	This defines whether load only analysis takes
	place i.e. only transformer size and loads
DP0=4.79	Maximum day volt drop in %when no services are
	modelled (As per ST:SD5K)
DP1=4.79	Maximum night volt drop in %when no services
	are modelled (As per ST:SD5K)
DP2=5	This is the value at which the increments of
	tapering will be carried out i.e. tapering will be
	70m or 75m
DP3=945	Cost of losses £/kW
RUC=10	The minimum economic % of cable used during
	tapering
RUL=50	This is the minimum length of cable (m) used
	during tapering
FaultLevelVoltage=250	This is the voltage used to calculate the fault
	levels
DesignVoltage=240	This is the nominal voltage used in the load flow
	studies
Loop_Resistance_Flag Service=Yes	This defines whether the loop resistance flag is
	checked by default when 'services' is selected
Loop_Resistance Service=220	This defines the default value for loop resistance
· -	when 'services' is selected (As per ST:SD5K)
DP0 Service=5.75	This is the maximum day volt drop in % when
	services are modelled (As per ST:SD5K)
DP1 Service=5.75	This is the maximum night volt drop in % when
	services are modelled (As per ST:SD5K)
[Rural Defaults]	
Fuse_Flag=Yes	This defines whether the fuse flag is checked as
_ 0	default. If it is, then Windebut checks whether
	there is a fusing override at the first node out
	from the substation
Fuse val=1.05	This is the safety margin used fro fuse ratings
Volt drop0=4.79	This is the maximum day volt drop in %
Volt drop1=4.79	This is the maximum night volt drop in %
SRIGNOR=0	This option allows service cables to be discounted
	from Debut calculations. In the rural/urban
	defaults there are three ignore check boxes. If all three are to be taken into consideration,
	then none will be checked and SRIGNOR=0,
	If Voltage drop across services is to be ignored
	only then SRIGNOR=1
	If Loop resistance of services is to be ignored only then SRIGNOR=2
	If Fault resistance/reactance of services is to be
	ignored only then SRIGNOR=4
	If Voltage drop across services and Loop
	resistance of services is to be ignored then

	Lancarda
	SRIGNOR=3 If Voltage drop across services and Fault resistance/reactance of services is to be ignored then SRIGNOR=5 If Loop resistance of services and Fault
	resistance/reactance of services is to be ignored then SRIGNOR=6
	If Voltage drop across services, Loop resistance of services and Fault resistance/reactance of services is to be ignored then SRIGNOR=7
Loop_Resistance_Flag=Yes	This defines whether the loop resistance flag is checked by default when 'no services' is selected
Loop_Resistance=135	This defines the default value for loop resistance
Loads_Only=No	when 'no services' is selected (As per ST:SD5K) This defines whether load only analysis takes
222 4 72	place i.e. only transformer size and loads
DP0=4.79	Maximum day volt drop in %when no services are modelled (As per ST:SD5K)
DP1=4.79	Maximum night volt drop in %when no services are modelled (As per ST:SD5K)
DP2=5	This is the value at which the increments of tapering will be carried out i.e. tapering will be 70m or 75m
DP3=945	Cost of losses £/kW
RUC=10	The minimum economic % of cable used during tapering
RUL=50	This is the minimum length of cable (m) used during tapering
FaultLevelVoltage=250	This is the voltage used to calculate the fault levels
DesignVoltage=240	This is the nominal voltage used in the load flow studies
Loop_Resistance_Flag Service=Yes	This defines whether the loop resistance flag is checked by default when 'services' is selected
Loop_Resistance Service=220	This defines the default value for loop resistance when 'services' is selected (As per ST:SD5K)
DP0 Service=5.75	This is the maximum day volt drop in % when services are modelled (As per ST:SD5K)
DP1 Service=5.75	This is the maximum night volt drop in % when services are modelled (As per ST:SD5K)
[Customise]	the second secon
LisaKerfordKey=No	IGNORE
AllowCopyToClipboard=Yes	This defines whether you can copy diagram and results for use in other applications
CopyToClipboardSizeInPercent=50	This defines the size of the copy to be made
Display_Interconnector_Cables=No	This defines if Inter-connector cables are displayed
ShowConsumerTypesDefBtn=No	Show the consumer types button on the consumer editor screen to load the consumer

	types specification screen
ShowCableTypesDefBtn=No	Show the cable types button on the cables editor
	screen to load the cable groups editor screen
[File Viewer Menu]	
Show Line Numbers=Yes	If yes, this will show line numbers on the output
	file
Print Landscape=Yes	This defines whether the output file is printed in
	landscape or portrait
[Debut]	
RUN_DEFUT_FILE_COPY=	
TIME_OUT_MS=20000	
TIME_OUT_INFINITE=No	

APPENDIX D

WINDEBUT.INI FILE:

```
;WinDebut.ini - setup file for windebut
[Information]
;paths should be left blank if relevant files are in the WinDebut
;directory, or a path may be given e.g. "c:\debut", "d:\windebut\datafile"
;NB no "\" at end.
DebutPath=
CablePath=
ConsumerPath=
TransformerPath=
WDGroupsPath=
; Above paths are for Debut and its data file, wdcable.dat, wdcnstyp.dat
; and wdxfrmr.dat respectively.
[Defaults]
; Global data defaults
Phase_Angle=120
No_of_Phases=3
PrintDefault=Yes
PrintConsumers=No
PrintColumn132=Yes
IECSIZE=Yes
FULLLOSS=Yes
XREG=Yes
DMOT=8
NMOT=4
[MotorStartCurrentMultipliers]
StarDelta = 3.5
AutoTransformer = 3.5
ElectSoftStart = 2.5
VariableSpeed = 2.5
SlipRingRR = 1.5
SinglePhCapStart = 4.5
SinglePhSeriesParallel = 2.5
[Results]
Show Cost=No
DR0Left=264
DR0Top=1035
DR1Left=46
DR1Top=192
DR2Left=18.8
DR2Top=283.9333
DR3Left=538
DR3Top=63
DR4Left=44
```

DR4Top=71

DR5Left=94.73333

DR5Top=18.86667

DR6Left=455.5333

DR6Top=45.4

[WinDebut]

OutputDirectory=Y:\POLICY\SD POLICY\SD5_LV_DESIGN\SD5B

NetworkDirectory=Y:\Policy\SD policy\SD5_LV_Design

PrivilegedUser=zYes

Maximised=Yes

MainLeft=91

MainTop=102

MainWidth=843

MainHeight=565

ShowNodeEditor=Yes

ShowDisclaimerScreen=Yes Editor Font Size=10

OptionsEditableByPrivilegedUserOnly=YES

OutputForEGD=Yes

LoadOtherDBDataFiles=No

DBDATA Path=

SaveGlobalDefaults=No

SaveLocalDefaults=Yes

DefaultNodeSize=1

ShowCableDetails=YES

ShowNodeDetails=YES

UserSelectIcons=YES

ConsumerTypeComments=YES

ShowEGDGraphs=NO

ShowLoopImpedance =No

ShowVoltagePercent=Yes

ShowCableDistributed=No

UsePhasesForGeneration=No

ShowOneDistributedObject=Yes

LinkEGDVoltageToDesignVoltage=Yes

ShowResultsTable=Yes

ShowResultsTableEGD=Yes

ShowFactorForGenMinLoad=Yes

VoltDropAcrossTXForGen=Yes

ShowEGDLoadDefault=Yes

[GISImport]

CheckForGEOConsolidation=Yes

[UserSettings]

AllowCableGroupChanges=Yes

AllowServiceCableChanges=No

AllowTransformerSelectionChanges=No

AllowConsumerTypeChanges=Yes

[Menu]

PrintLarge=Yes

PrintKey=Yes

PrintColumn=Yes

VoltDropByNodes=Yes FullNodeDetails=Yes

ShowCableDataOnTheDiagram=Yes

ShowDetailedConsumerToolTips=Yes

ComponentLabelSize=4

[Urban Settings]

Fuse_Flag=Yes

Fuse_val=1.05

Volt_drop0=4.79

Volt_drop1=4.79

SRIGNOR=0

Loop_Resistance_Flag=Yes

Loop Resistance=135

Loads_Only=No

DP0=4.79

DP1=4.79

DP2=5

DP3=945

RUC=10

RUL=50

FaultLevelVoltage=250

DesignVoltage=240

Loop_Resistance_Flag Service=Yes

Loop Resistance Service=220

DP0 Service=5.75

DP1 Service=5.75

[Rural Settings]

Fuse_Flag=Yes

Fuse_val=1.05

Volt_drop0=4.79

Volt_drop1=4.79

SRIGNOR=0

Loop Resistance Flag=Yes

Loop Resistance=135

Loads_Only=No

DP0=4.79

DP1=4.79

DP2=5

DP3=945

RUC=10

RUL=50

FaultLevelVoltage=250

DesignVoltage=240

Loop_Resistance_Flag Service=Yes

Loop_Resistance Service=220

DP0 Service=5.75

DP1 Service=5.75

[Customise]

AllowCopyToClipboard=Yes

CopyToClipboardSizeInPercent=50

Display Interconnector Cables=No

ShowConsumerTypesDefBtn=No

ShowCableTypesDefBtn=No

[File Viewer Menu]
Show Line Numbers=Yes
Print Landscape=Yes

[Debut]
RUN_DEBUT_FILE_COPY=
TIME_OUT_MS=20000
TIME_OUT_INFINITE=No

[Transformer] Path=

DBDCONSU.INI FILE:

!*ONE

ELEXON 1 Unrestricted Domestic

I*TWC

ELEXON 2 Domestic Economy Seven - for use when off peak electric heating is present

ELEXON 3 Unrestricted Non-Domestic

!*FOUR

ELEXON 4 Non-Domestic Economy 7 - for use when off peak electric heating is present

ELEXON 5 Non-Domestic, MD - Load Factor<20%

!*SIX

ELEXON 6 Non-Domestic, MD - Load Factor 20-30%

I*SFVFN

ELEXON 7 Non-Domestic, MD - Load Factor 30-40%

!*EIGHT

ELEXON 8 Non-Domestic, MD - Load Factor >40%

!*HOTPUB

HOTEL or PUB

!*CHURCH

CHURCH with off peak electric heating

TRFRUPD.INI:

The Trfrupd.ini configuration file points Windebut to where the Transformer search database File is held.

C:\PROGRAM FILES\WINDEBUT\DEBUT_TF.MDB

(Where Program Files\Windebut is the Windebut default directory on C: drive)

APPENDIX G

WDGROUPD.DAT FILE:

```
100,1
"120 Degrees"
3
1
1.05
"<FaultLevel>250"
"<DesignVoltage>240"
4.79,4.79
1
135
#FALSE#
4.79,4.79,100,945
50
#FALSE#
#FALSE#
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
```

```
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
"END OF GLOBAL DATA"
"ONE"
"<ConsumerName>ONE_3600_0"
"1._ONE_3600_0"
3600,0
0,0
0,0
0,0
0,0
0,0
```

```
2
"TWO"
"<ConsumerName>TWO_3500_8000"
"2.TWO_3600_8000"
3500,8000
0,0
0,0
0,0
0,0
0,0
3
"THREE"
"<ConsumerName>THREE_20000_0"
"3.THREE_20000_0"
20000,0
0,0
0,0
0,0
0,0
0,0
4
"FOUR"
"<ConsumerName>FOUR_20000_15000"
"4.FOUR_20000_15000"
20000,15000
0,0
0,0
0,0
0,0
0,0
5
"FIVE"
"<ConsumerName>FIVE_100_0"
"MDQ"
"5.FIVE_100_0"
100000,0
0,0
0,0
0,0
0,0
0,0
6
"SIX"
"<ConsumerName>SIX_100_0"
"MDQ"
"6.SIX_100_0"
100000,0
0,0
```

```
0,0
0,0
0,0
0,0
7
"SEVEN"
"<ConsumerName>SEVEN_100_0"
"MDQ"
"7.SEVEN_100_0"
100000,0
0,0
0,0
0,0
0,0
0,0
8
"EIGHT"
"<ConsumerName>EIGHT_100_0"
"MDQ"
"8.EIGHT_100_0"
100000,0
0,0
0,0
0,0
0,0
0,0
9
"ONE"
"<ConsumerName>15kW_MD"
"MDQ"
"9.ONE_15_0"
15000,0
0,0
0,0
0,0
0,0
0,0
10
"HOTPUB"
"<ConsumerName>HOTEL_PUB_30000_0"
"10.HOTEL_PUB_30000_0"
30000,0
0,0
0,0
0,0
0,0
0,0
11
"CHURCH"
"<ConsumerName>CHURCH_10000_10000"
```

```
"11.CHURCH_10000_10000"
10000,10000
0,0
0,0
0,0
0,0
0.0
"END OF CONSUMER TYPES"
"Mains, 1"
"WC 185 FS"
"WC 300 FS"
"Service 3ph, 2"
"HYT 25 FS SRV"
"HYT 35 FS SRV"
"Service 1ph, 3"
"HY 35 FS SRV"
"HY 25 FS SRV"
"END OF CABLE SELECTIONS"
START OF THE TRANSFORMER GROUPS
TOTAL TRANSFORMER GROUPS = 4
 MAX NO. OF TRANSFORMERS PER GROUP = 10
GMT, 1 2 4 -32767 -32767 -32767 -32767 -32767 -32767
 PMT 3 PH, 8 9 10 11 -32767 -32767 -32767 -32767 -32767
 PMT 1 PH, 13 14 15 -32767 -32767 -32767 -32767 -32767 -32767
SPLIT, 27 28 -32767 -32767 -32767 -32767 -32767 -32767 -32767
END OF THE TRANSFORMER GROUPS
START OF THE GLOBAL TRANSFORMER OPTIONS
IECSIZING = YES
FULLLOSS = YES
XREG = YES
 DMOT = 8
NMOT = 4
END OF THE GLOBAL TRANSFORMER OPTIONS
WinDebut Version=WinDebut V 3.1
PrintColumn132=Yes
Network Type (0 Is Urban, 1 Is Rural)=1
Study Title=<Untitled Study>
START OF THE DEBDAT CABLES
 Number of DEBDAT cables=112
 DEBDAT cable 1=ABC 50, 20
 DEBDAT cable 2=ABC 95, 2 0
 DEBDAT cable 3=ABC 120, 20
 DEBDAT cable 4=AL .007, 2 -1
 DEBDAT cable 5=AL .0145, 2 -1
 DEBDAT cable 6=AL .0225, 2 -1
 DEBDAT cable 7=AL .04, 2 -1
 DEBDAT cable 8=AL .06, 2 -1
 DEBDAT cable 9=AL .1, 20
```

DEBDAT cable 10=AL .15, 2 0

- DEBDAT cable 11=AL .2, 20
- DEBDAT cable 12=AL .25, 20
- DEBDAT cable 13=AL .3, 20
- DEBDAT cable 14=AL .4, 20
- DEBDAT cable 15=AL .5, 20
- DEBDAT cable 16=AL 25, 2 -1
- DEBDAT cable 17=AL 35, 2-1
- DEBDAT cable 18=AL 50, 20
- DEBDAT cable 19=AL 70, 2 0
- DEBDAT cable 20=AL 95, 20
- DEBDAT cable 21=AL 120, 20
- DEBDAT cable 22=AL 185, 2 0
- DEBDAT cable 23=AL 300, 2 0
- DEBDAT cable 24=AO .025, 20
- DEBDAT cable 25=AO .05, 2 0
- DEBDAT cable 26=AO .06, 2 0
- DEBDAT cable 27=AO .075, 20
- DEBDAT cable 28=AO .1, 20
- DEBDAT cable 29=AO .15, 20
- DEBDAT cable 30=AO 25, 20
- DEBDAT cable 31=AO 50, 2 0
- DEBDAT cable 32=AO 100, 20
- DEBDAT cable 33=AO 150, 20
- DEBDAT cable 34=CC 16, 2 -1
- DEBDAT cable 35=CC 25, 2 -1
- DEBDAT cable 36=CC 35, 2 -1
- DEBDAT cable 37=CCT 16, 2-1
- DEBDAT cable 38=CCT 25, 2-1
- DEBDAT cable 39=CCT 35, 2 -1
- DEBDAT cable 40=CO .007, 2 0
- DEBDAT cable 41=CO .0225, 2 0
- DEBDAT cable 42=CO .025, 2 0
- DEBDAT cable 43=CO .05, 2 0
- DEBDAT cable 44=CO .058, 2 0
- DEBDAT cable 45=CO .06, 2 0
- DEBDAT cable 46=CO .1, 2 0
- DEBDAT cable 47=CO .15, 2 0
- DEBDAT cable 48=CO 16, 20
- DEBDAT cable 49=CO 25, 2 0
- DEBDAT cable 50=CO 32, 2 0
- DEBDAT cable 51=CO 70, 2 0 DEBDAT cable 52=CO 100, 2 0
- DEBDAT cable 53=CS 70, 20
- DEBDAT cable 54=CS 95, 2 0
- DEBDAT cable 55=CS 120, 20
- DEBDAT cable 56=CS 150, 2 0
- DEBDAT cable 57=CS 185, 20
- DEBDAT cable 58=CS 240, 2 0
- DEBDAT cable 59=CS 300, 2 0
- DEBDAT cable 60=CU .007, 2 -1
- DEBDAT cable 61=CU .0145, 2 -1

- DEBDAT cable 62=CU .0225, 2 -1
- BEBDAT cable 63=CU .025, 2 -1
- DEBDAT cable 64=CU .04, 2 -1
- DEBDAT cable 65=CU .05, 2 -1
- DEBDAT cable 66=CU .06, 2 0
- DEBDAT cable 67=CU .1, 2 0
- DEBDAT cable 68=CU .15, 2 0
- DEBDAT cable 69=CU .2, 20
- DEBDAT cable 70=CU .25, 2 0
- DEBDAT cable 71=CU .3, 2 0
- DEBDAT cable 72=CU .4, 20
- DEBDAT cable 73=CU .5, 20
- DEBDAT cable 74=CU .6, 2 0
- DEBDAT cable 75=CU .75, 2 0
- DEBDAT cable 76=CU 16, 2 -1
- DEBDAT cable 77=CU 25, 2-1
- DEBDAT cable 78=CU 35, 2 -1
- DEBDAT cable 79=CU 70, 2 0
- DEBDAT cable 80=CU 95, 20
- DEBDAT cable 81=CU 120, 20
- DEBDAT cable 82=CU 185, 20
- DEBDAT cable 83=CU 300, 2 0
- DEBDAT cable 84=CU 400, 2 0
- DEBDAT cable 85=HY 25, 2 -1
- DEBDAT cable 86=HY 35, 2 -1
- DEBDAT cable 87=HYT 25, 2-1
- DEBDAT cable 88=HYT 35, 2-1
- DEBDAT cable 89=SA 480, 2 0
- DEBDAT cable 90=SA 600, 2 0
- DEBDAT cable 91=SA 740, 2 0
- DEBDAT cable 92=SA 960, 2 0
- DEBDAT cable 93=SA 1200, 20
- DEBDAT cable 94=SA 1480, 2 0
- DEBDAT cable 95=SA 1800, 2 0
- DEBDAT cable 96=SA 2220, 20
- DEBDAT cable 97=SCC 16, 2 -1
- DEBDAT cable 98=SCC 25, 2-1
- DEBDAT cable 99=SCC 35, 2-1
- DEBDAT cable 100=SCCT 25, 2-1
- DEBDAT cable 101=SCCT 35, 2-1
- DEBDAT cable 102=TR 70, 2 0
- DEBDAT cable 103=TR 95, 20
- DEBDAT cable 104=TR 120, 20
- DEBDAT cable 105=TR 150, 20
- DEBDAT cable 106=TR 185, 2 0
- DEBDAT cable 107=TR 240, 2 0
- DEBDAT cable 108=TR 300, 2 0
- DEBDAT cable 109=WC 35, 2 -1
- DEBDAT cable 110=WC 95, 2 0
- DEBDAT cable 111=WC 185, 2 0 DEBDAT cable 112=WC 300, 2 0

END OF THE DEBDAT CABLES

Service cables, Use loop resistance=YES Service cables, loop resistance=220 Service cables, max day volt drop=5.75 Service cables, max night volt drop=5.75 <ICONSIZE>1

APPENDIX H

EDGSETUP.DAT FILE:

```
CONSUMER_POWER_FACTORS 1
DEFAULT 0.97
GENERATOR_TYPES 5
Wind 30
111111111111
111111111111
111111111111
111111111111
0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0
Hydro 30
111111111111
111111111111
111111111111
111111111111
000000000000
CHP 3 0
111111111111
111111111111
111111111111
111111111111
000000000000
PV 2.4 0
0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0.04\ 0.08\ 0.11
0.15 0.19 0.26 0.33 0.46 0.58 0.7 0.81 0.88 0.95 0.98 1
0.99 0.97 0.93 0.89 0.81 0.74 0.64 0.53 0.42 0.31 0.25 0.19
0.15\ 0.11\ 0.07\ 0.04\ 0\ 0\ 0\ 0\ 0\ 0\ 0
000000000000
PV(Domstc) 2.4 0
0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0.04\ 0.08\ 0.11
0.15 0.19 0.26 0.33 0.46 0.58 0.65 0.7 0.75 0.77 0.79 0.8
0.8 0.79 0.78 0.76 0.73 0.69 0.63 0.53 0.42 0.31 0.25 0.19
0.15\ 0.11\ 0.07\ 0.04\ 0\ 0\ 0\ 0\ 0\ 0\ 0
0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0
VOLTAGE DROP
3.45 3.45
System_Voltage
240
GenLoadFactor
0.4
```

SUPERSEDED DOCUMENTS

This document supersedes ST: SD7A/7 dated January 2018 which has now been withdrawn

APPENDIX J

ANCILLARY DOCUMENTS

ST: SD5A Design of Low Voltage Domestic Connections

SD: SD5K Use of Windebut Software

ST: SD5N Relating the use of Windebut Software for assessing Motor and Welder

Voltage Disturbance (Flicker)

ST: SD5R Loop Impedances

EA Technology Report - DEBUT User Guide (for version 3.10) Report No: 4490 Project

No: TT081 June 1998

APPENDIX K

KEY WORDS

Design, Windebut, Non-domestic, Domestic, New Connection, New Development, Load Factor, Estimation.