

# **Company Directive**

# **STANDARD TECHNIQUE: SD7A/9**

# **Relating to the Data Sets Used with WinDebut Software**

# Summary

This document sets out the text in the background files used in the WinDebut LV network planning tool.

| Author:              | Seth Treasure |  |
|----------------------|---------------|--|
| Implementation Date: | January 2020  |  |
| Approved by:         | Bou           |  |
|                      | Paul Jewell   |  |

**DSO Development Manager** 

Date:

2 January 2020

| Target Staff Group       | Planners working on the LV network                                                            |
|--------------------------|-----------------------------------------------------------------------------------------------|
| Impact of Change         | Amber – Planners now have additional WINDEBUT profiles for LCTs available for their modelling |
| Planned Assurance checks | No specific checks as LV schemes are already checked as part of the sanction approval process |

**NOTE:** The current version of this document is stored in the WPD Corporate Information Database. Any other copy in electronic or printed format may be out of date. Copyright © 2020 Western Power Distribution

### **IMPLEMENTATION PLAN**

### Introduction

This Standard Technique sets out the text in the background files used in the WinDebut LV network planning tool.

### Main Changes

Following the Electric Nation NIA project, data has been used to create Battery Electric Vehicle (BEV) / Range Extender (REX) and Plug-in Hybrid Electric Vehicle (PHEV) load profiles. Appendices B, E and G amended accordingly.

### Impact of Changes

This revision sets out the latest background files in use.

#### **Implementation Actions**

Team Managers shall advise Planners and other staff who use WinDebut software that this revision has been issued to accompany the roll-out of updated WinDebut background files.

### Implementation Timetable

This change will be implemented with immediate effect.

# **REVISION HISTORY**

| Document Revision & Review Table |                                                                                                                                                                                                                                                                                   |                |  |  |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| Date                             | Comments                                                                                                                                                                                                                                                                          | Author         |  |  |  |  |  |
| January 2020                     | <ul> <li>Battery Electric Vehicle (BEV) / Range Extender<br/>(REX) and Plug-in Hybrid Electric Vehicle (PHEV)<br/>load profiles have been created, using data<br/>obtained from the Electric Nation NIA project</li> </ul>                                                        | Matt Pope      |  |  |  |  |  |
| July 2019                        | • The required impedance at the end of a main conductor has been amended from 190 to 135 m ohms                                                                                                                                                                                   | Seth Treasure  |  |  |  |  |  |
| January 2018                     | <ul> <li>Appendix C and D have been updated (changes to<br/>loop resistance limits)</li> </ul>                                                                                                                                                                                    | Andy Hood      |  |  |  |  |  |
| January 2017                     | Data set for Dbdata.txt updated. Appendix B.                                                                                                                                                                                                                                      | Stephen Davies |  |  |  |  |  |
| August 2015                      | <ul> <li>The latest text for the following files has been<br/>updated in line with those provided by A Hood:<br/>Appendix B: - Dbdata.txt<br/>Appendix D: - Windebut .ini<br/>Appendix E: - dbdconsu.ini<br/>Appendix G: - Wdgroups.dat<br/>Appendix H: - Edgsetup.dat</li> </ul> | Geoff Budd     |  |  |  |  |  |
|                                  |                                                                                                                                                                                                                                                                                   |                |  |  |  |  |  |

# INDEX

- 1.0 INTRODUCTION
- 2.0 USING 'DEBDAT.EXE' TO MODIFY DATA USED BY WINDEBUT
- 3.0 PRIVILEGED USER PASSWORD
- 4.0 DEBUT USER GUIDE (VERSION 3.1)
- 5.0 WINDEBUT.INI
- 6.0 LOAD ACCEPTANCE TOOL

# **APPENDICES**

#### **APPENDIX A**

Details the variables that can be modified within the WinDebut DBDATA.TXT data file.

#### **APPENDIX B**

The DBDATA.TXT data set file held within Win31r4 as revised February 2007.

#### **APPENDIX C**

Details the variables that can be modified within the WINDEBUT.INI data file.

#### APPENDIX D

The WINDEBUT.INI data set file held in Win31r4 as revised February 2007. (This file may be modified by WinDebut as it runs)

### APPENDIX E

The dbdconsu.ini file data set containing definitions of consumer types used in WinDebut

#### **APPENDIX F**

Trfrupd.ini configuration file points WinDebut to where the Transformer search database file is held.

#### APPENDIX G

Wdgroups.dat file giving details of consumer, transformer and cable groups used in WinDebut.

#### APPENDIX H

Edgsetup.dat file giving details of generator profiles used in WinDebut.

#### **APPENDIX I**

Superseded Documentation

#### **APPENDIX J**

Record of Comment during Consultation

**APPENDIX K** Ancillary Documents

APPENDIX L

Key Words

# 1.0 INTRODUCTION

- 1.1 This standard technique will enable updating of the data set held within WinDebut.
- 1.2 The configuration and data files used by WinDebut are held in the default directory on C: drive and consist of the following:
  - Dbdata.txt This file holds all the raw data used by WinDebut on cables, Transformers and consumers.
  - Dbdata.dta A compiled version of dbdata.txt as processed by the debdat.exe file (See below).
  - Windebut.ini Contains global defaults for WinDebut (See 5.0 and appendix D)
  - Trfrupd.ini This files points WinDebut to where the Transformer search database file is held.
  - Dbdconsu.ini This files holds the consumer descriptions as used by WinDebut
  - Wdgroups.dat This is a data file holding information on consumer, transformer and cable groups.
  - Debut\_tf.mdb This is a Microsoft Access version 2 database containing details of the distribution substations available for the transformer search function in WinDebut.

# 2.0 USING "DEBDAT.EXE" TO MODIFY THE DATA USED BY WinDebut

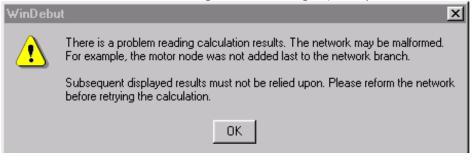
To change any of the data held within WinDebut follow this process:

- 2.1 Just to be safe copy the contents of DBDATA.TXT to DBDATA.OLD. This will enable disaster recovery should anything go wrong when doing the following.
- 2.2 Open the "DBDATA.TXT" file in a suitable editor (i.e. AMIPRO, Wordpro, Write, MS-Notepad or MS-Word).
- 2.3 Make the required changes to "DBDATA.TXT" and save it using the same file name "DBDATA.TXT".
- 2.4 Run DEBDAT.EXE. This will prompt the user for a file name (i.e. DBDATA.TXT).
- 2.5 Type in the file name; "DBDATA.TXT"; to be used and follow the instructions to overwrite the existing DBDATA.DTA file.
- 2.6 Upon successful completion the "DBDATA.TXT" file is converted to a "DBDATA.DTA" file. The user is told when this process has completed successfully.
- 2.7 Quit the "DEBDAT" program.
- 2.8 WinDebut can now be run with the new data (i.e. using the new "DBDATA.DTA" file).

### 3.0 PRIVILEGED USER PASSWORD

3.1 To modify WinDebut defaults used within the package there is a "Privileged User" button. The password for this is "ZWinDebut".

### 4.0 DEBUT USER GUIDE (from version 3.1)


4.1 This document is a comprehensive "DEBUT User Guide". The document is held by Design Policy, the 11kV Design team and Word Processing, Avonbank.

### 5.0 WINDEBUT.INI

- 5.1 This text file sets the global defaults for WinDebut as well as the more specific Urban Rural Defaults.
- 5.2 Urban and Rural Defaults can also be updated using the privileged user password within the package. This method is described in **ST: SD5K**.

### 6.0 LOAD ACCEPTANCE TOOL

- 6.1 The load acceptance tool is an enhancement in version 2.4k onwards.
- 6.2 The load acceptance tool uses transformer impedance data from Engineering Recommendation P28. This data is 'hard-wired' into WinDebut and is slightly different from the impedance data in dbdata.txt because DBDATA takes into account the variation in impedance values of transformers of different ages.
- 6.3 This difference in data may lead to <u>slight</u> discrepancies in the results when using the load acceptance tool.
- 6.4 WinDebut Version 2.4.4 release 5 saw additional data added to the P28 data to enable South Wales planners to model three phase GMT transformers used in a split phase configuration. This data is additional to P28 Table D6 and is 'hard-wired' into WinDebut.
- 6.5 To avoid problems the motor/welder node should be the last item added to the network. WinDebut Version 2.4.4 release 5 saw a feature that brings up an error message if WinDebut is run and the motor/welder node is not the last added to the network to enable the user to re-organise the design. (Example shown below)



# APPENDIX A

# **DBDATA.TXT FILE VARIABLES**

| Variable                            | Units   | Values | Description                                                                                                                                   |
|-------------------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Design parameters                   |         |        |                                                                                                                                               |
| Maximum volt drop Day               | %       | 4.79   | Equivalent to 5% of 230V                                                                                                                      |
| Maximum volt drop Night             | %       | 4.79   | Equivalent to 5% of 230V                                                                                                                      |
| Incremental length to use to taper  | metres  | 50     |                                                                                                                                               |
| Capitalised cost of LV cable losses | £/kW MD | 945    | Indicative value                                                                                                                              |
| Decimal places                      |         |        |                                                                                                                                               |
| Phase + Neutral voltage drop        | none    | 2      | The number of allowable decimal places for this variable.                                                                                     |
| Phase to Neutral loop resistance    | none    | 2      | The number of allowable decimal places for this variable.                                                                                     |
| Maximum fault current               | none    | 2      | The number of allowable decimal places for this variable.                                                                                     |
| Maximum current demand              | none    | 2      | The number of allowable decimal places for this variable.                                                                                     |
| Joint costs                         |         |        |                                                                                                                                               |
| SERVJT                              | £       | 174.60 | Indicative cost of MSB23 - 185<br>Wavecon main - 2 x 1ph + 1 x 3ph<br>Sp/Conc services                                                        |
| CABLJT                              | £       | 183.52 | Indicative cost of MS2 - 185 - 185<br>Wavecon straight joint                                                                                  |
| SUBSTJ                              | £       | 334.26 | Indicative cost of MS2 - 185<br>Wavecon - indoor termination                                                                                  |
| ТАРЕЈТ                              | £       | 173.79 | Indicative cost of MB2 - 185<br>Wavecon Main - 95 Wavecon<br>branch                                                                           |
| TEEJT                               | £       | 272.93 | Indicative cost of MB3 - 300<br>Wavecon main to 185 Wavecon<br>branch                                                                         |
| TRANSX                              |         |        |                                                                                                                                               |
| Name                                |         |        | GMT = 3 Phase Ground Mounted<br>Transformer<br>PMT = 3 Phase Pole Mounted<br>Transformer<br>PMTSIN = Single Phase Pole<br>Mounted Transformer |
| COST                                | £       |        | Indicative cost of a transformer                                                                                                              |
| RATING                              | kVA     |        | The name plate rating of the transformer                                                                                                      |
| TRANSFORMER LV RESISTANCE           | Ohms    |        | LV winding resistance                                                                                                                         |

| Variable                               | Units            | Values | Description                                                                 |
|----------------------------------------|------------------|--------|-----------------------------------------------------------------------------|
| TRANSFORMER LV REACTANCE               | Ohms             |        | LV winding reactance                                                        |
| IRON LOSSES                            | Watts            |        | The iron losses of the transformer                                          |
| CU LOSSES                              | Watts            |        | The copper losses of the transformer                                        |
| FUSE RATING                            | Amps             |        | The maximum fuse rating of the transformer                                  |
| OUTTEM                                 |                  |        | 1                                                                           |
| Day maximum                            | 0 <sup>0</sup> C | 8      | maximum day value                                                           |
| Night minimum                          | °C               | 4      | minimum night value                                                         |
| HOTSPO – transformer hotspot valu      | les (BS7735)     |        |                                                                             |
| Maximum temperature                    | <sup>0</sup> C   | 140    |                                                                             |
| Normal ageing temperature              | 0 <sup>C</sup>   | 98     |                                                                             |
| Hotspot rise                           | °C               | 78     |                                                                             |
| Hotspot to top oil gradient            | °C               | 23     |                                                                             |
| OIL – transformer oil temperature (    | BS7735)          |        |                                                                             |
| Maximum Top temperature                | <sup>0</sup> C   | 105    |                                                                             |
| Top oil rise                           | °C               | 55     |                                                                             |
| Exponent constant                      | constant         | 0.8    |                                                                             |
| Time                                   | hours            | 3      |                                                                             |
| Top of winding oil rise                | °C               | 55     |                                                                             |
| LOSSRA                                 |                  |        |                                                                             |
| Pole mounted<br>transformer loss ratio | ratio            | 8      | Ratio of copper losses at nameplate<br>rating to iron losses (copper losses |
| Ground mounted transformer loss ratio  | ratio            | 8      | divided by iron losses)                                                     |
| CCIRON                                 |                  |        |                                                                             |
| fixed iron losses cost                 | £/W              | 2.97   | Indicative Capitalised cost of transformer fixed iron and variable          |

| Variable                                            | Units    | Values | Description<br>copper losses                                                                                          |  |  |
|-----------------------------------------------------|----------|--------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| variable copper losses cost                         | £/W      | 0.596  |                                                                                                                       |  |  |
| LOADIN                                              |          |        | I                                                                                                                     |  |  |
| Maximum cyclic mult                                 | per unit | 1.5    |                                                                                                                       |  |  |
| Average enclosure air temperature rise at full load | °C       | 15     | In version 2.0k onwards this is<br>replaced by -3, which has the effect<br>of implementing formula:<br>SQRT(rating/2) |  |  |
| POWERF                                              |          | 0.95   | Load power factor                                                                                                     |  |  |
| XREGUL                                              |          | 2      | Substation excess regulation                                                                                          |  |  |
| CONSUMER DATA                                       |          |        | All the consumer types that can be<br>used within the package (see also<br>ST:SD5J)                                   |  |  |
| CABLES (Type)                                       |          |        |                                                                                                                       |  |  |
| CU                                                  | metres   |        | Copper underground cable                                                                                              |  |  |
| AL                                                  | metres   |        | Aluminium underground cable                                                                                           |  |  |
| CS                                                  | metres   |        | CONSAC cable                                                                                                          |  |  |
| WC                                                  | Metres   |        | WAVECON cable                                                                                                         |  |  |
| TR                                                  | Metres   |        | 'Trydan' Cable                                                                                                        |  |  |
| СО                                                  | metres   |        | Copper overhead conductor                                                                                             |  |  |
| AO                                                  | metres   |        | Aluminium overhead conductor                                                                                          |  |  |
| ABC                                                 | metres   |        | Aerial Bundled<br>Conductor                                                                                           |  |  |
| CC                                                  | metres   |        | Copper concentric cable                                                                                               |  |  |
| НҮ                                                  | metres   |        | Single phase HYBRID cable                                                                                             |  |  |
| SA                                                  | metres   |        | SOLIDAL armoured cable                                                                                                |  |  |
| SU                                                  | metres   |        | SOLIDAL unarmoured cable                                                                                              |  |  |
| CI                                                  | metres   |        | Single core copper cable                                                                                              |  |  |
| AI                                                  | metres   |        | Single aluminium copper cable                                                                                         |  |  |
| НҮТ                                                 | metres   |        | Three phase HYBRID cable                                                                                              |  |  |
| ССТ                                                 | metres   |        | Three phase copper concentric cable                                                                                   |  |  |

| Variable                                      | Units                                                             | Values   | Description                                                                                                           |
|-----------------------------------------------|-------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------|
| SCC                                           | metres                                                            |          | Split copper concentric single phase cable                                                                            |
| CABLES                                        |                                                                   |          | 1                                                                                                                     |
| SIZE                                          | imperial<br>(in <sup>2</sup> ) or<br>metric<br>(mm <sup>2</sup> ) |          | Cross sectional area of cable/conductor                                                                               |
| COST                                          | £                                                                 |          | Indicative cost per metre                                                                                             |
| RATING                                        | Amps                                                              |          | <u>Sustained</u> current rating of the cable<br>as per National Eng. Rec. P28<br>(formally P13/1)&SD8B                |
| OPERATING RESISTANCE PHASE +<br>NEUTRAL       | Ohms per<br>1000<br>metres                                        |          |                                                                                                                       |
| FAULT RESISTANCE PHASE +<br>NEUTRAL           | Ohms per<br>1000<br>metres                                        |          |                                                                                                                       |
| FAULT REACTANCE PHASE +<br>NEUTRAL            | Ohms per<br>1000<br>metres                                        |          |                                                                                                                       |
| DEFAULTS                                      |                                                                   |          | 1                                                                                                                     |
| GROUP 1<br>WC 95<br>WC 185<br>WC 300          | metres                                                            |          | Selection GROUP 1.<br>LV underground cable default<br>values. All three phase mains<br>cables.                        |
| GROUP 2<br>ABC 50<br>ABC 95                   | metres                                                            |          | Selection GROUP 2.<br>LV overhead line default values. 4<br>core, Three phase plus Neutral                            |
| FUSE RATINGS                                  |                                                                   | 1        |                                                                                                                       |
| 100, 160, 200, 250, 315, 400, 500<br>and 630. | Amps                                                              |          | All fuse ratings are to<br>BS88: Part 5                                                                               |
| FAULT LEVELS                                  |                                                                   |          |                                                                                                                       |
| MINIMUM FAULT LEVEL                           | Amps                                                              | Variable | Minimum acceptable fault level<br>based on non-adiabatic cable ratings<br>and adiabatic overhead conductor<br>ratings |
| CONSUMER DATA                                 |                                                                   | •        | ·                                                                                                                     |

| Variable                                                                                                                                                         | Units | Values | Description                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFFER/OFGEM profiles created from<br>the ELECTRICITY ASSOCIATION LOAD<br>RESEARCH UNIT data 1998. q values<br>modified to embrace previous<br>SWEB/WPD profiles. |       |        | All the consumer load profiles for<br>the differing consumer types that<br>can be used within WinDebut. With<br>the respective "P" followed by "Q"<br>values. i.e. P,Q,P,Q,P,Q,P,Qetc. |

#### **APPENDIX B**

#### **DBDATA.TXT FILE:**

! DBDATA.TXT, Version 3.1.19 12/08/15 ! Windebut version 3.1.19 data file

DESIGN PARAMETERS

| !MAX V [<br>!DAY<br>!(%) | DROP<br>NIGHT<br>(%) | MAX LGTH<br>TAPERING<br>(m) |                         | CAPITALIZED<br>(POUNDS/KW) | COST |
|--------------------------|----------------------|-----------------------------|-------------------------|----------------------------|------|
| 4.79                     | 4.79                 | 100                         | 945.0                   |                            |      |
| DECIMAL                  | PLACES               |                             |                         |                            |      |
| ! PH+N<br>! Vd<br>!      | PH+N<br>RES          | MAX<br>PH-N F.<br>CURRENT   | MAX<br>FAULT<br>CURRENT | MAX<br>DEMAND<br>CURRENT   |      |
| 2                        | 2                    | 2                           | 2                       | 2                          |      |

JOINT COSTS

! MSB23 - Service joint 185 wavecon main 2 by 1 ph. & 1 by 3 ph.serv. SERVJT 174.60 ! MS2 - Straight Joint 185 to 185 3 core wavecon CABLJT 183.52 !7.402 - Indoor termination 3 core 185 wavecon SUBSJT 334.26 ! MB2 - Branch Joint 3 core 185 uncut main 95 branch TAPEJT 173.79 ! MB3 - Branch Joint 3 core 300 uncut main 185 branch TEEJT 272.93

TRANSX

```
! SOURCE OF THE DATA BELOW
! SouthWales TF TEST CERTIFICATES FOR LV RESISTANCE AND REACT. 23/04/02
! PROTECTION POLICY ST: TP4B FOR MAXIMUM FUSE RATING,
! EE SPEC 5: APPENDIX D FOR IRON AND CU LOSS
! WPD VALUES FOR GROUND MOUNTED TRANSFORMERS ARE BELOW
                        TRANSFORMER TRANSFORMER
                                             PHASE GMT=1 GUARANTEED MAXIMUM
                                Т/F Туре
        T/F Phases
1
       120 = Three Phase
0 = Single Phase
                                GMT = 1
I
                               PMT = 2
       180 = Split Phase
I.
```

| ! NAME                                                                                                                                                                                                                                     | COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RATING                                                                                                                                                                      | LV RES                                                                                                                                                                                                                                                                                                                           | LV REA                                                                                                                                                                                                                                                             | PHASE                                                              | TYPE                                                                                             | Fe<br>Losses                                                                                                                                                                                        | CU<br>Losses                                                                                                                                                                                                         | MAX<br>Fuse                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| i.                                                                                                                                                                                                                                         | (£)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (A)                                                                                                                                                                         | (OHMS)                                                                                                                                                                                                                                                                                                                           | (OHMS)                                                                                                                                                                                                                                                             |                                                                    |                                                                                                  | (W)                                                                                                                                                                                                 | (W)                                                                                                                                                                                                                  | (A)                                                                                                              |  |
| GMT<br>GMT<br>GMT<br>GMT<br>GMT<br>GMT<br>PMTTRP<br>PMTTRP<br>PMTTRP<br>PMTTRP<br>PMTTRP<br>PMTTRP<br>PMTSIN<br>PMTSIN<br>PMTSIN<br>PMTSIN<br>PMTSIN<br>PMTSIN<br>PMTSIN<br>PMTSIN<br>SPLT<br>SPLT<br>SPLT<br>SPLT<br>SPLT<br>SPLT<br>SPLT | 7193.00<br>5578.00<br>0.00<br>5182.00<br>0.00<br>3696.00<br>3305.00<br>2868.00<br>2783.00<br>0.00<br>2346.00<br>1763.00<br>1649.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 800<br>750<br>500<br>315<br>300<br>200<br>315<br>200<br>100<br>50<br>25<br>100<br>50<br>25<br>16<br>15<br>100<br>5<br>1000<br>800<br>750<br>500<br>315<br>300<br>200<br>100 | 0.00219<br>0.00291<br>0.00313<br>0.00509<br>0.00901<br>0.00948<br>0.0158<br>0.0371<br>0.0876<br>0.208<br>0.01113<br>0.0266<br>0.0612<br>0.108<br>0.118<br>0.1113<br>0.0266<br>0.0612<br>0.0612<br>0.00220<br>0.00291<br>0.00220<br>0.00291<br>0.00313<br>0.00509<br>0.00901<br>0.009048<br>0.0158<br>0.02225<br>0.0532<br>0.1124 | 0.0115<br>0.0171<br>0.0268<br>0.0281<br>0.0406<br>0.0268<br>0.0406<br>0.0810<br>0.144<br>0.266<br>0.0255<br>0.0496<br>0.0944<br>0.139<br>0.146<br>0.206<br>0.0944<br>0.139<br>0.146<br>0.206<br>0.0086<br>0.0107<br>0.0115<br>0.0171<br>0.0268<br>0.0281<br>0.0406 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 650<br>510<br>1000<br>360<br>600<br>520<br>417<br>520<br>356<br>145<br>90<br>70<br>174<br>113<br>65<br>48<br>73<br>57<br>39<br>1283<br>1120<br>1000<br>755<br>600<br>520<br>417<br>243<br>113<br>65 | 8400<br>5500<br>6300<br>3900<br>4146<br>3000<br>3091<br>3900<br>2750<br>1750<br>1750<br>1636<br>973<br>559<br>405<br>430<br>310<br>175<br>7139<br>5913<br>4200<br>4141<br>2764<br>2000<br>2061<br>1636<br>973<br>559 | $\begin{array}{c} 500\\ 500\\ 500\\ 400\\ 315\\ 315\\ 250\\ 315\\ 200\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100$ |  |
| !Outsid<br>!<br>OUTTEM                                                                                                                                                                                                                     | e temper<br>Day Max<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ature (d<br>Night M<br>4                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                    |                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                  |  |
| !Hot sp                                                                                                                                                                                                                                    | ot value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s:                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                    |                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                  |  |
| 1                                                                                                                                                                                                                                          | Мах                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Normal                                                                                                                                                                      | Rise                                                                                                                                                                                                                                                                                                                             | Top Oil                                                                                                                                                                                                                                                            | Top Oil<br>Gradient                                                |                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                  |  |
| :<br>HOTSPO                                                                                                                                                                                                                                | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98                                                                                                                                                                          | 78                                                                                                                                                                                                                                                                                                                               | 23                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                  |  |
| !Oil va<br>!<br>!<br>OIL                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Top<br>Rise<br>55                                                                                                                                                           | Exp<br>0.8                                                                                                                                                                                                                                                                                                                       | T.CONST<br>3                                                                                                                                                                                                                                                       | Top Wir<br>Rise<br>55                                              | nding                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                  |  |
| !Loss r<br>!<br>LOSSRA                                                                                                                                                                                                                     | PMT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GMT<br>10                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                    |                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                  |  |
| !Capitalised cost of transformer fixed iron & variable copper losses:<br>! Fe(£) CU(£)<br>CCIRON 2.97 0.596                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                    |                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                  |  |
| <pre>!Loading parameters: Maximum Cyclic Average Enclosure ! MAX ENCLOSURE ! CYCLIC AIR TEMP RISE ! MULT FULL lOAD ! Negative means use sqrt(rating/2) LOADIN 1.5 -3</pre>                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                    |                                                                    |                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                      |                                                                                                                  |  |

!Load power factor POWERF 0.95 !Winding exponent WINDIN 1.6 !Substation excess regulation XREGUL 2.0 CABLES DEBUT CABLE TYPES DEBUT ABBREVIATION: DESCRIPTION: COPPER UNDERGROUND CONDUCTOR CU ALUMINIUM UNDERGROUND CONDUCTOR AL CS. CONSAC CONDUCTOR WAVECON CONDUCTOR WC CO COPPER OVERHEAD CONDUCTOR AO ALUMINIUM OVERHEAD CONDUCTOR ABC AERIAL BUNBLED CONDUCTOR COPPER CONCENTRIC CONDUCTOR CC HYBRID CONDUCTOR SINGLE PHASE HY SOLIDAL ARMOURED CONDUCTOR SA. SU SOLIDAL UNARMOURED CONDUCTOR SINGLE CORE COPPER SINGLE CORE ALUMINIUM CI AI HYBRID CONDUCTOR, THREE PHASE COPPER CONCENTRIC CONDUCTOR, THREE PHASE HYT сст SCC SPLIT CONCENTRIC COPPER CONCENTRIC SINGLE PHASE 'TRYDAN' OR "ALPEX" CABLE TR I OPERATING FAULT FAULT RESISTANCE RESISTANCE REACTANCE TYPE ! COST RATING OPERATING RES FAULT REACT SIZE FAULT RES PHASE NEUTRAL PHASE NEUTRAL PHASE NEUTRA (OHMS / 1000M) (OHMS / 1000M) (OHMS / 1000M) NEUTRAL (OHM5 / 1000M) (A) ABC 50 1.94 157 0.6410 0.6410 0.6410 0.6410 0.0840 0.0840 0.3200 0.3200 0.3200 ABC 95 3.26 250 0.3200 0.0770 0.0770 120 328 0.2530 0.2530 0.0680 4.15 0.2530 ABC 0.2530 0.0680 0.007 6.5703 AL 0.00 52 6.5703 6.5703 6.5703 0.1006 0.1006 76 AL 0.0145 0.00 3.1441 3.1441 3.1441 3.1441 0.0896 0.0896 84 2.0800 2.0800 2.0800 2.0800 0.0864 AL 0.0225 0.00 0.0864 112 AL 0.04 0.00 1.1600 1.1600 1.1600 1.1600 0.0787 0.0787 AL 0.06 0.00 162 0.7670 0.7670 0.7670 0.7670 0.0755 0.0755 0.4560 0.0733 0.1 0.00 216 0.4560 0.4560 0.4560 0.0733 AL 246 0.0700 AL 0.15 0.00 0.3120 0.3120 0.3120 0.3120 0.0700 0.2 AL 0.00 302 0.2340 0.2340 0.2340 0.2340 0.0689 0.0689 0.1870 0.1870 0.25 0.00 319 0.1870 0.1870 0.0689 0.0689 AL 0.00 391 AL 0.3 0.1520 0.1520 0.1520 0.1520 0.0678 0.0678 AL 0.4 0.00 428 0.1130 0.1130 0.1130 0.1130 0.0678 0.0678 488 0.0923 0.0923 0.0923 AL 0.5 0.00 0.0923 0.0667 0.0667 1.2000 1.2000 1.2000 1.2000 0.0790 0.0790 0.00 25 112 AL 0.8680 AL 35 0.00 135 0.8680 0.8680 0.8680 0.0745 0.0745 162 0.8500 0.8500 0.8500 0.8500 0.0745 0.0745 AL 50 0.34 0.4430 0.4430 0.0710 AL 70 0.00 202 0.4430 0.4430 0.0710 95 262 0.3200 0.0700 AL 3.73 0.3200 0.3200 0.3200 0.0700 120 0.00 283 0.2530 0.2530 0.2530 0.2530 0.0680 0.0680 AL 391 AL 185 6.95 0.1640 0.1640 0.1640 0.1640 0.0680 0.0680 0.0670 9.03 520 0.1000 0.1000 0.1000 0.1000 0.0670 AL 300 0.3105 AO 0.025 0.00 152 1.0880 1.0880 1.0880 1.0880 0.3051 230 AO 0.05 0.00 0.5420 0.5420 0.5420 0.5420 0.2970 0.2970 0.4520 0.4520 165 0.4520 0.4520 0.2970 AO 0.06 0.00 0.2970 AO 0.075 0.00 250 0.3600 0.3600 0.3600 0.3600 0.2970 0.2970 0.2700 351 0.2760 AO 0.1 0.00 0.2700 0.2700 0.2700 0.2760 0.2600 0.2600 453 A0 0.15 0.00 0.1826 0.1826 0.1826 0.1826 152 AO 25 0.27 1.0640 1.0640 1.0640 1.0640 0.3010 0.3010 0.5420 50 0.42 230 0.5420 0.5420 0.5420 0.2970 AO 0.2970 100 0.66 349 0.2700 0.2700 0.2700 0.2700 0.2760 0.2760 AO 150 2.00 450 0.1830 0.1830 0.1830 0.1830

AO

0.2600

0.2600

| TR | 70  | 3.75  | 212 | 0.4430 | 0.4430 | 0.4430 | 0.4430 | 0.0755 | 0.0152 |
|----|-----|-------|-----|--------|--------|--------|--------|--------|--------|
| TR | 95  | 0.00  | 254 | 0.3200 | 0.3200 | 0.3200 | 0.3200 | 0.0735 | 0.0155 |
| TR | 120 | 0.00  | 290 | 0.2530 | 0.2530 | 0.2530 | 0.2530 | 0.0730 | 0.0153 |
| TR | 150 | 0.00  | 344 | 0.2060 | 0.2060 | 0.2060 | 0.2060 | 0.0740 | 0.0150 |
| TR | 185 | 0.00  | 373 | 0.1640 | 0.1640 | 0.1640 | 0.1640 | 0.0740 | 0.0140 |
| TR | 240 | 0.00  | 460 | 0.1250 | 0.1640 | 0.1250 | 0.1640 | 0.0730 | 0.0123 |
| TR | 300 | 0.00  | 500 | 0.1000 | 0.1640 | 0.1000 | 0.1640 | 0.0725 | 0.0108 |
| WC | 35  | 0.00  | 141 | 0.9390 | 0.9390 | 0.9390 | 0.9390 | 0.0820 | 0.0820 |
| WC | 95  | 6.13  | 279 | 0.3200 | 0.3200 | 0.3200 | 0.3200 | 0.0735 | 0.0155 |
| WC | 185 | 11.38 | 407 | 0.1640 | 0.1640 | 0.1640 | 0.1640 | 0.0740 | 0.0140 |
| WC | 300 | 14.25 | 538 | 0.1000 | 0.1640 | 0.1000 | 0.1640 | 0.0725 | 0.0108 |

DEFAULTS !LV UNDERGROUND CABLE

WC 185 WC 300

!LV OVERHEAD LINE

| ABC | 50  |
|-----|-----|
| ABC | 95  |
| ABC | 120 |
| AO  | 50  |
| AO  | 100 |

| FUSE RATINGS | 100 | 160 | 200 | 250 | 315 | 355 | 400 | 500 | 630 |
|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|              |     |     |     |     |     |     |     |     |     |

FAULT LEVELS

BASED NON-ADIABTIC RATING OF CABLES AND ADIABATIC RATING OF OVERHEAD LINES:

| !FUSE F    | RATINGS: |            | 100        | 160         | 200        | 250         | 315          | 355          | 400          | 500          | 630           |
|------------|----------|------------|------------|-------------|------------|-------------|--------------|--------------|--------------|--------------|---------------|
| !COND.     | COND.    | MAX        | MENTMU     | M FAULT     | LEVEL .    |             |              |              |              |              |               |
| TYPE       | SIZE     | FUSE       | (A)        | (A)         | (A)        | (A)         | (A)          | (A)          | (A)          | (A)          | (A)           |
|            | 50       | 500        | 200        | <b>F4</b> 7 | 71.0       | 1000        | 1710         | 2270         | 21.64        | 6020         | 20000         |
| ABC<br>ABC | 50<br>95 | 500<br>630 | 298<br>298 | 517<br>517  | 719<br>661 | 1099<br>848 | 1710<br>1032 | 2270<br>1437 | 3164<br>1877 | 6939<br>3132 | 30000<br>5510 |
| ABC        | 120      | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1577         | 2622         | 3416          |
| AL         | 0.007    | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
| AL         | 0.0145   | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
| AL         | 0.0145   | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
| AL         | 0.0225   | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
| AL         | 0.04     | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
|            | 0.00     | 630        | 298        | 517         | 661        | 954         | 1416         | 1907         | 2539         | 4658         | 7870          |
| AL<br>AL   | 0.15     | 630        | 298        | 517         | 661        | 848         | 1032         | 1431         | 1871         | 3151         | 5570          |
| AL         | 0.15     | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1526         | 2501         | 3461          |
| AL         | 0.25     | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1454         | 2087         | 3358          |
| AL         | 0.3      | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1454         | 1903         | 2901          |
| AL         | 0.3      | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1454         | 1903         | 2446          |
| AL         | 0.4      | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1454         | 1903         | 2446          |
| AL         | 25       | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
| AL         | 35       | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
| AL         | 50       | 500        | 298        | 517         | 745        | 1117        | 1765         | 2354         | 3284         | 7214         | 30000         |
| AL         | 70       | 630        | 298        | 517         | 661        | 909         | 1322         | 1806         | 2442         | 4330         | 7626          |
| AL         | 95       | 630        | 298        | 517         | 661        | 848         | 1032         | 1454         | 1924         | 3229         | 5659          |
| AL         | 120      | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1637         | 2683         | 3436          |
| AL         | 185      | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1454         | 1903         | 3149          |
| AL         | 300      | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1454         | 1903         | 2446          |
| AO         | 0.025    | 400        | 298        | 638         | 944        | 1470        | 2342         | 3238         | 4450         | 30000        | 30000         |
| AO         | 0.05     | 630        | 298        | 517         | 661        | 944         | 1357         | 1800         | 2388         | 4158         | 7406          |
| AO         | 0.06     | 630        | 298        | 517         | 661        | 872         | 1180         | 1628         | 2090         | 3476         | 5976          |
| AO         | 0.075    | 630        | 298        | 517         | 661        | 848         | 1032         | 1416         | 1814         | 2945         | 4625          |
| AO         | 0.1      | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1511         | 2388         | 3484          |
| AO         | 0.15     | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1454         | 1903         | 2748          |
| AO         | 25       | 400        | 298        | 638         | 944        | 1470        | 2342         | 3238         | 4450         | 30000        | 30000         |
| AO         | 50       | 630        | 298        | 517         | 661        | 944         | 1357         | 1800         | 2388         | 4158         | 7406          |
| AO         | 100      | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1511         | 2388         | 3484          |
| AO         | 150      | 630        | 298        | 517         | 661        | 848         | 1032         | 1255         | 1454         | 1903         | 2748          |
| CC         | 16       | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
| cc         | 25       | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
| cc         | 35       | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
|            | 16       | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |
| CCT        |          |            |            |             |            |             | 575          |              | 776          |              |               |
| CCT        | 25       | 630        | 186        | 290         | 369        | 470         |              | 667          |              | 981          | 1244          |
| ССТ        | 35       | 630        | 186        | 290         | 369        | 470         | 575          | 667          | 776          | 981          | 1244          |

| <u></u>    | 0.007        | 100        | 298        | 30000      | 30000      | 30000      | 30000        | 30000        | 30000        | 30000        | 30000        |
|------------|--------------|------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|
| C0<br>C0   | 0.0225       | 400        | 298        | 687        | 1014       | 1604       | 2596         | 3671         | 5016         | 30000        | 30000        |
| co         | 0.025        | 400        | 298        | 641        | 959        | 1478       | 2364         | 3254         | 4533         | 30000        | 30000        |
| CO         | 0.05         | 630        | 298        | 517        | 661        | 965        | 1365         | 1824         | 2413         | 4180         | 7477         |
| CO         | 0.058        | 630        | 298        | 517<br>517 | 661        | 863        | 1188<br>1188 | 1638<br>1638 | 2115<br>2115 | 3492         | 5916         |
| C0<br>C0   | 0.06<br>0.1  | 630<br>630 | 298<br>298 | 517        | 661<br>661 | 863<br>848 | 1032         | 1255         | 1526         | 3492<br>2394 | 5916<br>3486 |
| co         | 0.15         | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2804         |
| co         | 16           | 400        | 298        | 647        | 964        | 1439       | 2405         | 3339         | 4572         | 30000        | 30000        |
| CO         | 25           | 500        | 298        | 517        | 750        | 1100       | 1678         | 2224         | 3012         | 6092         | 30000        |
| CO         | 32<br>70     | 630        | 298<br>298 | 517<br>517 | 661<br>661 | 960<br>848 | 1408<br>1032 | 1852<br>1255 | 2438<br>1454 | 4295<br>2286 | 7626         |
| C0<br>C0   | 100          | 630<br>630 | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 3492<br>2772 |
| ČS .       | 70           | 630        | 298        | 517        | 661        | 906        | 1322         | 1806         | 2422         | 4330         | 7626         |
| CS         | 95           | 630        | 298        | 517        | 661        | 848        | 1032         | 1454         | 1924         | 3229         | 5659         |
| CS         | 120          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1637         | 2683         | 3436         |
| CS<br>CS   | 150<br>185   | 630<br>630 | 298<br>298 | 517<br>517 | 661<br>661 | 848<br>848 | 1032<br>1032 | 1255<br>1255 | 1454<br>1454 | 2188<br>1903 | 3401<br>3149 |
| CS CS      | 240          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| Ċ5         | 300          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| CU         | 0.007        | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| CU         | 0.0145       | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| CU<br>CU   | 0.0225       | 630<br>630 | 186<br>186 | 290<br>290 | 369<br>369 | 470<br>470 | 575<br>575   | 667<br>667   | 776<br>776   | 981<br>981   | 1244<br>1244 |
| cu         | 0.04         | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| CU         | 0.05         | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| CU         | 0.06         | 630        | 298        | 517        | 661        | 1005       | 1532         | 2054         | 2774         | 5464         | 9426         |
| CU<br>CU   | 0.1<br>0.15  | 630<br>630 | 298<br>298 | 517<br>517 | 661<br>661 | 848<br>848 | 1032<br>1032 | 1431<br>1255 | 1874<br>1454 | 3136<br>2264 | 5529<br>3505 |
| CU         | 0.15         | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2882         |
| čŭ         | 0.25         | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| CU         | 0.3          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| CU         | 0.4          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| CU<br>CU   | 0.5<br>0.6   | 630<br>630 | 298<br>298 | 517<br>517 | 661<br>661 | 848<br>848 | 1032<br>1032 | 1255<br>1255 | 1454<br>1454 | 1903<br>1903 | 2446<br>2446 |
| cu         | 0.75         | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| CU         | 16           | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| CU         | 25           | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| CU<br>CU   | 35<br>70     | 630<br>630 | 186<br>298 | 290<br>517 | 369<br>661 | 470<br>848 | 575<br>1032  | 667<br>1375  | 776<br>1772  | 981<br>2987  | 1244<br>5049 |
| CU         | 95           | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 2325         | 3497         |
| cu         | 120          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1955         | 2446         |
| CU         | 185          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| CU         | 300          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| CU<br>HY   | 400<br>25    | 630<br>630 | 298<br>186 | 517<br>290 | 661<br>369 | 848<br>470 | 1032<br>575  | 1255<br>667  | 1454<br>776  | 1903<br>981  | 2446<br>1244 |
| HY         | 35           | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| HYT        | 25           | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| HYT        | 35           | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| SA<br>SA   | 480<br>600   | 630<br>630 | 298<br>298 | 517<br>517 | 661<br>661 | 848<br>848 | 1032<br>1032 | 1255<br>1255 | 1454<br>1454 | 1903<br>1903 | 2446<br>2446 |
| SA         | 740          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| SA         | 960          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| SA         | 1200         | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| SA         | 1480         | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| SA<br>SA   | 1800<br>2220 | 630<br>630 | 298<br>298 | 517<br>517 | 661<br>661 | 848<br>848 | 1032<br>1032 | 1255<br>1255 | 1454<br>1454 | 1903<br>1903 | 2446<br>2446 |
| SCC        | 16           | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| SCC        | 25           | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| SCC        | 35           | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| SCCT       | 25<br>35     | 630<br>630 | 186<br>186 | 290<br>290 | 369<br>369 | 470<br>470 | 575<br>575   | 667<br>667   | 776<br>776   | 981<br>981   | 1244<br>1244 |
| SCCT<br>TR | 70           | 630        | 298        | 517        | 661        | 848        | 1032         | 1405         | 1863         | 3203         | 5729         |
| TR         | 95           | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 2474         | 3461         |
| TR         | 120          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 2921         | 3358         |
| TR         | 150          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454         | 1903         | 2446         |
| TR<br>TR   | 185<br>240   | 630<br>630 | 298<br>298 | 517<br>517 | 661<br>661 | 848<br>848 | 1032<br>1032 | 1255<br>1255 | 1454<br>1454 | 1903<br>1903 | 2446<br>2446 |
|            | 300          | 630        | 298        | 517        | 661        | 848<br>848 | 1032         | 1255         | 1454         | 1903         | 2446         |
| WC         | 35           | 630        | 186        | 290        | 369        | 470        | 575          | 667          | 776          | 981          | 1244         |
| WC         | 95           | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1510         | 2587         | 3413         |
| WC         | 185          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1454<br>1454 | 1903         | 2446         |
| WC         | 300          | 630        | 298        | 517        | 661        | 848        | 1032         | 1255         | 1404         | 1903         | 2446         |

CONSUMERS

| ONE<br>!Based or                                                                                                   | n EATL P                                                                                                 | rofile                                                                                                                                 | URMC                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                        |                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 0.08 (0<br>0.04 (0<br>0.247 (0<br>0.200 (0<br>0.176 (0<br>0.166 (0<br>0.336 (0<br>0.275 (0<br>0.213 (0<br>0.369 (0 | 0.122<br>0.074<br>0.096<br>0.276<br>0.258<br>0.222<br>0.202<br>0.202<br>0.249<br>0.203<br>0.187<br>0.309 | 0.06<br>0.04<br>0.052<br>0.192<br>0.162<br>0.179<br>0.334<br>0.278<br>0.168<br>0.351<br>0.000                                          | 0.099<br>0.077<br>0.097<br>0.272<br>0.245<br>0.200<br>0.199<br>0.241<br>0.205<br>0.185<br>0.302<br>0.000 | 0.049<br>0.037<br>0.073<br>0.22<br>0.181<br>0.156<br>0.229<br>0.305<br>0.277<br>0.118<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.089<br>0.072<br>0.14<br>0.249<br>0.243<br>0.195<br>0.235<br>0.218<br>0.206<br>0.162<br>0.000<br>0.000                        | 0.042<br>0.039<br>0.121<br>0.203<br>0.188<br>0.142<br>0.296<br>0.296<br>0.269<br>0.371<br>0.000<br>0.000                       | 0.079<br>0.073<br>0.205<br>0.249<br>0.248<br>0.191<br>0.268<br>0.219<br>0.198<br>0.299<br>0.000<br>0.000                       | 0.041<br>0.042<br>0.173<br>0.213<br>0.203<br>0.152<br>0.328<br>0.283<br>0.257<br>0.387<br>0.000<br>0.000                               | 0.079<br>0.074<br>0.264<br>0.258<br>0.239<br>0.197<br>0.270<br>0.215<br>0.192<br>0.268<br>0.000<br>0.000                       |
| TWO<br>!Based or                                                                                                   | n EATL P                                                                                                 | rofile I                                                                                                                               | ELECAR                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                        |                                                                                                                                |
| 1.046 (<br>0.659 (<br>0.428 (<br>0.296 (<br>0.194 (<br>0.292 (<br>0.568 (<br>0.516 (<br>0.350 (<br>0.355 (         | 0.332<br>0.230<br>0.272<br>0.309<br>0.217<br>0.289<br>0.229<br>0.229<br>0.222<br>0.364<br>0.274          | 1.146<br>1.085<br>0.541<br>0.320<br>0.348<br>0.194<br>0.317<br>0.552<br>0.531<br>0.300<br>0.342<br>0.000                               | 0.339<br>0.261<br>0.302<br>0.227<br>0.302<br>0.274<br>0.339<br>0.258<br>0.194<br>0.364<br>0.145<br>0.000 | $1.078 \\ 1.063 \\ 0.423 \\ 0.323 \\ 0.285 \\ 0.214 \\ 0.402 \\ 0.571 \\ 0.494 \\ 0.45 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000$ | 0.311<br>0.248<br>0.338<br>0.221<br>0.230<br>0.259<br>0.338<br>0.241<br>0.231<br>0.500<br>0.000<br>0.000                       | 1.093<br>1.074<br>0.378<br>0.286<br>0.256<br>0.23<br>0.451<br>0.559<br>0.46<br>0.377<br>0.000<br>0.000                         | 0.336<br>0.178<br>0.384<br>0.172<br>0.216<br>0.253<br>0.319<br>0.308<br>0.229<br>0.399<br>0.000<br>0.000                       | 1.068<br>0.903<br>0.488<br>0.267<br>0.247<br>0.302<br>0.512<br>0.543<br>0.400<br>0.351<br>0.000<br>0.000                               | 0.321<br>0.196<br>0.250<br>0.229<br>0.300<br>0.283<br>0.382<br>0.306<br>0.364<br>0.292<br>0.000<br>0.000                       |
| THREE<br>!Based or                                                                                                 | n EATL P                                                                                                 | rofile :                                                                                                                               | SSHOP                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                        |                                                                                                                                |
| 0.055 0<br>0.056 0<br>0.175 0<br>0.452 0<br>0.447 0<br>0.402 0<br>0.225 0<br>0.096 0<br>0.080 0<br>0.447 0         | 0.055<br>0.056<br>0.175<br>0.452<br>0.447<br>0.402<br>0.225<br>0.096<br>0.080<br>0.447                   | 0.062<br>0.056<br>0.057<br>0.221<br>0.458<br>0.412<br>0.395<br>0.157<br>0.091<br>0.075<br>0.412<br>0.000                               | 0.062<br>0.056<br>0.057<br>0.221<br>0.458<br>0.412<br>0.395<br>0.157<br>0.091<br>0.075<br>0.412<br>0.000 | 0.06<br>0.056<br>0.071<br>0.308<br>0.459<br>0.401<br>0.391<br>0.124<br>0.087<br>0.073<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.06<br>0.056<br>0.071<br>0.308<br>0.459<br>0.401<br>0.391<br>0.124<br>0.087<br>0.073<br>0.000<br>0.000                        | 0.06<br>0.055<br>0.112<br>0.393<br>0.455<br>0.409<br>0.375<br>0.108<br>0.083<br>0.455<br>0.000<br>0.000                        | 0.06<br>0.055<br>0.112<br>0.393<br>0.455<br>0.409<br>0.375<br>0.108<br>0.083<br>0.455<br>0.000<br>0.000                        | $\begin{array}{c} 0.057\\ 0.057\\ 0.151\\ 0.432\\ 0.451\\ 0.410\\ 0.318\\ 0.100\\ 0.082\\ 0.451\\ 0.000\\ 0.000\\ \end{array}$         | $\begin{array}{c} 0.057\\ 0.057\\ 0.151\\ 0.432\\ 0.451\\ 0.410\\ 0.318\\ 0.100\\ 0.082\\ 0.451\\ 0.000\\ 0.000\\ \end{array}$ |
| FOUR<br>!Based or                                                                                                  | 1 EATL P                                                                                                 | rofile 1                                                                                                                               | NSHOP                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                                                                |                                                                                                                                |                                                                                                                                        |                                                                                                                                |
| 1.072 0<br>0.727 0<br>0.206 0<br>0.533 0<br>0.526 0<br>0.473 0<br>0.265 0<br>0.113 0<br>0.094 0<br>0.526 0         | 0.452<br>0.410<br>0.206<br>0.533<br>0.526<br>0.473<br>0.265<br>0.114<br>0.094<br>0.526                   | $\begin{array}{c} 1.080\\ 1.012\\ 0.666\\ 0.260\\ 0.539\\ 0.485\\ 0.485\\ 0.185\\ 0.107\\ 0.088\\ 0.485\\ 0.485\\ 0.000\\ \end{array}$ | 0.567<br>0.451<br>0.498<br>0.260<br>0.539<br>0.485<br>0.465<br>0.185<br>0.107<br>0.088<br>0.485<br>0.000 | 0.609<br>0.363<br>0.541<br>0.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.526\\ 0.454\\ 0.467\\ 0.363\\ 0.541\\ 0.472\\ 0.460\\ 0.146\\ 0.103\\ 0.086\\ 0.000\\ 0.000\\ \end{array}$ | $\begin{array}{c} 1.121\\ 0.873\\ 0.493\\ 0.463\\ 0.535\\ 0.481\\ 0.442\\ 0.127\\ 0.098\\ 0.535\\ 0.000\\ 0.000\\ \end{array}$ | $\begin{array}{c} 0.501\\ 0.453\\ 0.846\\ 0.463\\ 0.535\\ 0.481\\ 0.442\\ 0.127\\ 0.098\\ 0.535\\ 0.000\\ 0.000\\ \end{array}$ | $\begin{array}{c} 1.113\\ 0.795\\ 0.178\\ 0.509\\ 0.531\\ 0.483\\ 0.374\\ 0.117\\ 0.096\\ 0.531\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$ | 0.481<br>0.421<br>0.178<br>0.509<br>0.531<br>0.483<br>0.374<br>0.117<br>0.096<br>0.531<br>0.000<br>0.000                       |

| FIVE<br>!ELEXON PROFILE 5                                                                                                                                                            | <20% Load Factor                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                             |                                                                                                          |                                                                                                          |                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                 | $\begin{array}{ccccc} 0.181 & 0.069 \\ 0.121 & 0.073 \\ 0.197 & 0.110 \\ 0.151 & 0.437 \\ 0.586 & 0.513 \\ 0.134 & 0.433 \\ 0.241 & 0.369 \\ 0.233 & 0.093 \\ 0.315 & 0.059 \\ 0.152 & 0.066 \\ 0.411 & 0.000 \\ 0.000 & 0.000 \end{array}$   | $\begin{array}{cccccc} 0.317 & 0.067 \\ 0.127 & 0.071 \\ 0.179 & 0.125 \\ 0.151 & 0.490 \\ 0.467 & 0.513 \\ 0.134 & 0.442 \\ 0.255 & 0.318 \\ 0.195 & 0.085 \\ 0.271 & 0.058 \\ 0.188 & 0.072 \\ 0.000 & 0.000 \\ 0.000 & 0.000 \end{array}$                                                | 0.320<br>0.110<br>0.387<br>0.550<br>0.351<br>0.219<br>0.329<br>0.302<br>0.206<br>0.559<br>0.000<br>0.000 | 0.069<br>0.072<br>0.169<br>0.505<br>0.487<br>0.437<br>0.250<br>0.074<br>0.059<br>0.068<br>0.000<br>0.000 | 0.318<br>0.130<br>0.429<br>0.653<br>0.306<br>0.253<br>0.271<br>0.326<br>0.203<br>0.519<br>0.000<br>0.000                                |
| SIX<br>!ELEXON PROFILE 6                                                                                                                                                             | 20% to 30% Load                                                                                                                                                                                                                               | Factor                                                                                                                                                                                                                                                                                      |                                                                                                          |                                                                                                          |                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                 | $\begin{array}{cccccc} 0.057 & 0.073 \\ 0.064 & 0.078 \\ 0.058 & 0.105 \\ 0.088 & 0.301 \\ 0.103 & 0.364 \\ 0.092 & 0.346 \\ 0.132 & 0.315 \\ 0.141 & 0.145 \\ 0.143 & 0.094 \\ 0.083 & 0.074 \\ 0.125 & 0.000 \\ 0.000 & 0.000 \end{array}$  | $\begin{array}{ccccc} 0.\ 060 & 0.\ 072 \\ 0.\ 067 & 0.\ 080 \\ 0.\ 087 & 0.\ 125 \\ 0.\ 081 & 0.\ 347 \\ 0.\ 087 & 0.\ 361 \\ 0.\ 096 & 0.\ 344 \\ 0.\ 141 & 0.\ 296 \\ 0.\ 116 & 0.\ 130 \\ 0.\ 152 & 0.\ 089 \\ 0.\ 074 & 0.\ 123 \\ 0.\ 000 & 0.\ 000 \\ 0.\ 000 & 0.\ 000 \end{array}$ | 0.059<br>0.066<br>0.221<br>0.098<br>0.085<br>0.105<br>0.132<br>0.143<br>0.159<br>0.264<br>0.000<br>0.000 | 0.074<br>0.080<br>0.159<br>0.357<br>0.359<br>0.343<br>0.269<br>0.119<br>0.087<br>0.124<br>0.000<br>0.000 | $\begin{array}{c} 0.061 \\ 0.060 \\ 0.230 \\ 0.119 \\ 0.089 \\ 0.103 \\ 0.139 \\ 0.116 \\ 0.134 \\ 0.145 \\ 0.000 \\ 0.000 \end{array}$ |
| SEVEN<br>!ELEXON PROFILE 7                                                                                                                                                           | 30% to 40% Load                                                                                                                                                                                                                               | Factor                                                                                                                                                                                                                                                                                      |                                                                                                          |                                                                                                          |                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                 | $\begin{array}{ccccccc} 0.044 & 0.103 \\ 0.042 & 0.101 \\ 0.044 & 0.124 \\ 0.079 & 0.228 \\ 0.048 & 0.256 \\ 0.049 & 0.250 \\ 0.056 & 0.235 \\ 0.095 & 0.178 \\ 0.066 & 0.144 \\ 0.052 & 0.109 \\ 0.078 & 0.000 \\ 0.000 & 0.000 \end{array}$ | $\begin{array}{ccccccc} 0.041 & 0.102 \\ 0.041 & 0.102 \\ 0.046 & 0.138 \\ 0.057 & 0.240 \\ 0.045 & 0.257 \\ 0.053 & 0.247 \\ 0.057 & 0.227 \\ 0.127 & 0.169 \\ 0.078 & 0.131 \\ 0.047 & 0.156 \\ 0.000 & 0.000 \\ 0.000 & 0.000 \end{array}$                                               | 0.041<br>0.043<br>0.056<br>0.058<br>0.047<br>0.052<br>0.055<br>0.093<br>0.088<br>0.126<br>0.000<br>0.000 | 0.100<br>0.102<br>0.251<br>0.255<br>0.244<br>0.213<br>0.162<br>0.126<br>0.148<br>0.000<br>0.000          | 0.042<br>0.044<br>0.075<br>0.054<br>0.054<br>0.054<br>0.076<br>0.089<br>0.143<br>0.000<br>0.000                                         |
| EIGHT<br>!ELEXON PROFILE 8                                                                                                                                                           | >40% Load Factor                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                           |                                                                                                          |                                                                                                          |                                                                                                                                         |
| 0.1230.0310.1210.1180.0370.1170.1200.0340.1210.1520.0290.1590.1730.0410.1740.1780.0310.1760.1710.0380.1710.1750.0380.1670.1570.0380.1510.1320.0720.1300.1480.0650.1480.0000.0000.000 | $\begin{array}{ccccc} 0.030 & 0.119 \\ 0.037 & 0.117 \\ 0.030 & 0.128 \\ 0.031 & 0.165 \\ 0.042 & 0.176 \\ 0.030 & 0.175 \\ 0.038 & 0.172 \\ 0.030 & 0.165 \\ 0.041 & 0.145 \\ 0.051 & 0.125 \\ 0.055 & 0.000 \\ 0.000 & 0.000 \end{array}$   | $\begin{array}{ccccc} 0.031 & 0.120 \\ 0.037 & 0.119 \\ 0.031 & 0.132 \\ 0.037 & 0.170 \\ 0.037 & 0.179 \\ 0.030 & 0.173 \\ 0.040 & 0.173 \\ 0.040 & 0.163 \\ 0.049 & 0.141 \\ 0.031 & 0.148 \\ 0.000 & 0.000 \\ 0.000 & 0.000 \end{array}$                                                 | 0.037<br>0.038<br>0.031<br>0.040<br>0.034<br>0.034<br>0.037<br>0.031<br>0.062<br>0.049<br>0.000<br>0.000 | 0.119<br>0.141<br>0.172<br>0.178<br>0.171<br>0.172<br>0.161<br>0.136<br>0.149<br>0.000<br>0.000          | $\begin{array}{c} 0.037\\ 0.031\\ 0.040\\ 0.033\\ 0.040\\ 0.031\\ 0.031\\ 0.066\\ 0.057\\ 0.000\\ 0.000\\ \end{array}$                  |

| BEVREX         |             |                |                |             |                |       |                |                |                |
|----------------|-------------|----------------|----------------|-------------|----------------|-------|----------------|----------------|----------------|
| !Based         | on resu.    | lts from       | Electric       | Nation      | NIA proj       | ject  |                |                |                |
| 0.441          | 5.212       | 0.363          | 4.403          | 0.295       | 5.362          | 0.239 | 4.893          | 0.186          | 5.003          |
| 0.139          | 3.438       | 0.104          | 2.351          | 0.079       | 1.838          | 0.062 | 1.489          | 0.051          | 1.238          |
| 0.043          | 1.243       | 0.035          | 1.093          | 0.030       | 1.113          | 0.028 | 1.187          | 0.037          | 1.085          |
| 0.048          | 0.906       | 0.060          | 1.274          | 0.069       | 1.916          | 0.087 | 1.951          | 0.099          | 2.059          |
| 0.105          | 1.498       | 0.111          | 1.885          | 0.114       | 2.001          | 0.117 | 1.797          | 0.119          | 2.346          |
| 0.119          | 2.062       | 0.123          | 1.807          | 0.126       | 1.849          | 0.133 | 2.443          | 0.141          | 2.610          |
| 0.156          | 2.353       | 0.184          | 2.627          | 0.218       | 3.043          | 0.271 | 3.617          | 0.359          | 2.883          |
| 0.487          | 4.083       | 0.595          | 4.440          | 0.672       | 3.510          | 0.714 | 5.507          | 0.740          | 6.260          |
| 0.741          | 4.786       | 0.725          | 4.085          | 0.715       | 4.616          | 0.701 | 5.078          | 0.674          | 5.167          |
| 0.637          | 5.622       | 0.585          | 5.349          | 0.533       | 5.179          | 0.120 | 3.905          | 0.103          | 3.486          |
| 0.079          | 3.165       | 0.065          | 3.063          | 0.000       | 0.000          | 0.000 | 0.000          | 0.000          | 0.000          |
| 0.000          | 0.000       | 0.000          | 0.000          | 0.000       | 0.000          | 0.000 | 0.000          | 0.000          | 0.000          |
| DUEV           |             |                |                |             |                |       |                |                |                |
| PHEV           | on resul    | lts from       | Flectric       | Nation      | NTA proj       | lect  |                |                |                |
| :Daseu         | on resu.    |                | LIECUIC        | Nacion      | NIA proj       | Ject  |                |                |                |
| 0.096          | 1.071       | 0.063          | 1.475          | 0.037       | 1.271          | 0.020 | 1.133          | 0.011          | 0.902          |
| 0.004          | 0.463       | 0.003          | 0.289          | 0.002       | 0.155          | 0.001 | 0.166          | 0.002          | 0.163          |
| 0.002          | 0.163       | 0.002          | 0.158          | 0.003       | 0.317          | 0.006 | 0.390          | 0.011          | 0.554          |
| 0.014          | 0.519       | 0.020          | 0.657          | 0.038       | 0.623          | 0.056 | 1.166          | 0.056          | 1.010          |
| 0.051          | 0.679       | 0.052          | 0.697          | 0.057       | 0.869          | 0.068 | 1.081          | 0.078          | 1.124          |
| 0.091          | 1.317       | 0.099          | 1.394          | 0.105       | 1.324          | 0.111 | 2.104          | 0.111          | 1.423          |
| 0.114          | 1.401       | 0.153          | 1.260          | 0.202       | 2.047          | 0.251 | 1.638          | 0.309          | 1.739          |
| 0.411          | 2.707       | 0.463          | 2.604          | 0.498       | 2.526          | 0.507 | 2.432          | 0.494          | 1.944          |
| 0.437          | 3.163       | 0.383          | 2.427          | 0.323       | 2.396          | 0.277 | 2.010          | 0.245          | 2.200          |
| 0.215          | 1.476       | 0.181          | 1.499          | 0.144       | 1.268          | 0.016 | 0.618          | 0.009          | 0.452          |
| 0.004          | 0.312       | 0.002          | 0.312          | 0.000       | 0.000          | 0.000 | 0.000          | 0.000          | 0.000          |
| 0.000          | 0.000       | 0.000          | 0.000          | 0.000       | 0.000          | 0.000 | 0.000          | 0.000          | 0.000          |
| HOTPUB         |             |                |                |             |                |       |                |                |                |
|                | on EATL     | Profiles       | HOTEL a        | nd PUBH     |                |       |                |                |                |
| 0.111          | 0.111       | 0.102          | 0.102          | 0.093       | 0.093          | 0.088 | 0.088          | 0.085          | 0.085          |
| 0.088          | 0.088       | 0.090          | 0.090          | 0.088       | 0.088          | 0.088 | 0.088          | 0.088          | 0.088          |
| 0.086          | 0.086       | 0.092          | 0.092          | 0.088       | 0.088          | 0.119 | 0.119          | 0.181          | 0.181          |
| 0.204<br>0.188 | 0.204 0.188 | 0.209<br>0.199 | 0.209<br>0.199 | 0.208       | 0.208<br>0.224 | 0.200 | 0.200<br>0.242 | 0.193<br>0.263 | 0.193<br>0.263 |
| 0.265          | 0.265       | 0.267          | 0.267          | 0.243       | 0.243          | 0.216 | 0.216          | 0.181          | 0.181          |
| 0.160          | 0.160       | 0.157          | 0.157          | 0.165       | 0.165          | 0.180 | 0.180          | 0.206          | 0.206          |
| 0.236          | 0.236       | 0.251          | 0.251          | 0.270       | 0.270          | 0.271 | 0.271          | 0.267          | 0.267          |
| 0.263          | 0.263       | 0.263<br>0.177 | 0.263<br>0.177 | 0.262       | 0.262          | 0.255 | 0.255          | 0.248          | 0.248          |
| 0.228          | 0.228       | 0.177          | 0.177          | 0.134 0.000 | 0.134<br>0.000 | 0.242 | 0.242          | 0.263          | 0.263          |
| 0.000          | 0.000       | 0.000          | 0.000          | 0.000       | 0.000          | 0.000 | 0.000          | 0.000          | 0.000          |
|                |             |                |                |             |                |       |                |                |                |

| CHURCH<br>!Based                                                                                         | on EATL                                                                                                                      | Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Church                                                                                                                         |                                                                                                                   |                                                                                                                                             |                                                                                                                       |                                                                                                                                        |                                                                                                                               |                                                                                                                        |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 0.027<br>0.026<br>0.057<br>0.416<br>0.133<br>0.207<br>0.134<br>0.647<br>0.062<br>0.692<br>0.000          | $\begin{array}{c} 0.027\\ 0.026\\ 0.026\\ 0.057\\ 0.416\\ 0.133\\ 0.207\\ 0.134\\ 0.647\\ 0.062\\ 0.692\\ 0.000 \end{array}$ | 0.025<br>0.024<br>0.025<br>0.077<br>0.396<br>0.144<br>0.179<br>0.242<br>0.562<br>0.041<br>0.654<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.025\\ 0.024\\ 0.025\\ 0.077\\ 0.396\\ 0.144\\ 0.179\\ 0.242\\ 0.562\\ 0.041\\ 0.654\\ 0.000\\ \end{array}$ | 0.025<br>0.025<br>0.027<br>0.086<br>0.349<br>0.181<br>0.115<br>0.418<br>0.418<br>0.422<br>0.038<br>0.000<br>0.000 | 0.025<br>0.027<br>0.086<br>0.349<br>0.181<br>0.155<br>0.418<br>0.422<br>0.038<br>0.000<br>0.000                                             | 0.025<br>0.024<br>0.029<br>0.299<br>0.318<br>0.204<br>0.11<br>0.633<br>0.28<br>2.159<br>0.000<br>0.000                | 0.025<br>0.024<br>0.029<br>0.299<br>0.318<br>0.204<br>0.11<br>0.633<br>0.28<br>2.159<br>0.000<br>0.000                                 | $\begin{array}{c} 0.026\\ 0.026\\ 0.05\\ 0.412\\ 0.171\\ 0.209\\ 0.123\\ 0.651\\ 0.162\\ 1.365\\ 0.000\\ 0.000\\ \end{array}$ | $\begin{array}{c} 0.026\\ 0.050\\ 0.412\\ 0.171\\ 0.209\\ 0.123\\ 0.651\\ 0.162\\ 1.365\\ 0.000\\ 0.000\\ \end{array}$ |
| ECOTEN<br>!Econor                                                                                        | my 10 pr                                                                                                                     | ofile e.g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . elect                                                                                                                        | ric flow                                                                                                          | boiler                                                                                                                                      |                                                                                                                       |                                                                                                                                        |                                                                                                                               |                                                                                                                        |
| 0.254<br>0.682<br>0.154<br>0.447<br>0.347<br>0.801<br>0.649<br>0.541<br>0.750<br>0.372<br>0.801<br>0.000 | 0.254<br>0.682<br>0.154<br>0.477<br>0.347<br>0.801<br>0.649<br>0.541<br>0.750<br>0.372<br>0.801<br>0.000                     | 0.203<br>0.683<br>0.155<br>0.410<br>0.342<br>0.751<br>0.450<br>0.543<br>0.708<br>0.336<br>0.751<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.203<br>0.683<br>0.155<br>0.410<br>0.342<br>0.751<br>0.450<br>0.543<br>0.708<br>0.336<br>0.751<br>0.000                       | 0.658<br>0.697<br>0.199<br>0.356<br>0.348<br>0.714<br>0.450<br>0.550<br>0.672<br>0.318<br>0.000<br>0.000          | 0.658<br>0.697<br>0.199<br>0.356<br>0.348<br>0.714<br>0.450<br>0.550<br>0.672<br>0.318<br>0.000<br>0.000                                    | 0.655<br>0.710<br>0.271<br>0.348<br>0.367<br>0.706<br>0.481<br>0.600<br>0.429<br>0.367<br>0.000<br>0.000              | $\begin{array}{c} 0.655\\ 0.710\\ 0.271\\ 0.348\\ 0.367\\ 0.706\\ 0.481\\ 0.600\\ 0.429\\ 0.367\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$ | 0.654<br>0.710<br>0.365<br>0.344<br>0.383<br>0.658<br>0.532<br>0.788<br>0.401<br>0.383<br>0.000<br>0.000                      | 0.654<br>0.710<br>0.365<br>0.344<br>0.383<br>0.658<br>0.532<br>0.788<br>0.401<br>0.383<br>0.000<br>0.000               |
| CONST<br>!Flat                                                                                           | Profile                                                                                                                      | Load Fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tor 100                                                                                                                        | %                                                                                                                 |                                                                                                                                             |                                                                                                                       |                                                                                                                                        |                                                                                                                               |                                                                                                                        |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000000000000000000000000000000000000000                                                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                         |                                                                                                                                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                             |                                                                                                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                | 000000000000000000000000000000000000000                                                                                |
| WELDER                                                                                                   |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                                                                                   |                                                                                                                                             |                                                                                                                       |                                                                                                                                        |                                                                                                                               |                                                                                                                        |
| 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                            | 1.000 1.<br>1.000 1.<br>1.000 1.<br>1.000 1.<br>1.000 1.<br>1.000 1.<br>1.000 1.<br>1.000 1.<br>1.000 1.<br>1.000 1.         | $\begin{array}{c} 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.000 \\ 000 & 1.0$ | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                                         | 1.000 1.0<br>1.000 1.0<br>1.000 1.0<br>1.000 1.0<br>1.000 1.0<br>1.000 1.0<br>1.000 1.0<br>1.000 1.0<br>1.000 1.0 | 000 1.000<br>000 1.000 | 0 1.000<br>0 1.000 | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                                                 |                                                                                                                               |                                                                                                                        |

#### MOTOR

| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |

STOP

# WINDEBUT.INI VARIABLES:

| Comments -             | Comment lines start with a semi-colon. These may be used to         |
|------------------------|---------------------------------------------------------------------|
|                        | supply addition information to anyone likely to be editing the file |
| Section Heading        | Different sections are given headings enclosed in square            |
|                        | brackets                                                            |
| Variablename = Setting | Entries have this form.                                             |

The following Table describes the Variable Names Entries Used :

| Phase_Angle=120                  | This is the default values used where the phase    |
|----------------------------------|----------------------------------------------------|
|                                  | angle is required, this is linked to the number of |
|                                  | phases                                             |
| No_of_Phases=3                   | This is the default values used where the number   |
|                                  | of phases is required                              |
| PrintDefault=Yes                 | Determines if default values are shown in the      |
|                                  | output file                                        |
| PrintConsumers=No                | This outputs information about the number of       |
|                                  | consumers of each type present in the study plus   |
|                                  | the program data from the program data file        |
| PrintColumn132=Yes               | This defines the number of characters printed      |
|                                  | across the page on the printout                    |
| IECSIZE=Yes                      | Enables checking of transformer sizing against     |
|                                  | BS7735                                             |
| FULLLOSS=Yes                     | If yes, this will carry out full loss calculations |
| XREG=Yes                         | This instructs WinDebut to calculate voltage       |
|                                  | regulation on all transformers                     |
| DMOT=8                           | Day Maximum outside temperature °C                 |
|                                  | Used by the BS7735 calculation to calculate the    |
|                                  | expected oil temperature rise (using cyclic        |
|                                  | loading data) of the transformer.                  |
| NMOT=4                           | Night Minimum outside temperature °C               |
|                                  | Used by the BS7735 calculation to calculate the    |
|                                  | expected oil temperature rise (using cyclic        |
|                                  | loading data) of the transformer.                  |
| [Results]                        |                                                    |
| Show Cost=No                     | This enables cost information to be shown in       |
|                                  | results                                            |
|                                  |                                                    |
| [WinDebut]                       |                                                    |
| OutputDirectory=C:\WIN314        | This is the default directory which appears when   |
|                                  | you request a debut analysis                       |
| NetworkDirectory=C:\WIN314\DESIG | This is the directory where all WinDebut files     |
| NS                               | reside                                             |
| PrivilegedUser=Yes               | Yes means the user is a privileged user, No        |
|                                  | indicates a standard user                          |

| Maximised=Yes                              | This defines whether the screen is maximised on start up of WinDebut                                   |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------|
| ShowNodeEditor=Yes                         | This gives the user the option to disable the node options of voltage drop selection and fuse override |
| ShowDisclaimerScreen=Yes                   | This gives the user the option of seeing the disclaimer screen on WinDebut start up                    |
| OptionsEditableByPrivilegedUserOnly<br>=No | If yes, this enables only privileged users to change options within WinDebut                           |
| OutputForEGD=No                            | This enables another output file (Debut.op) to be produced for use with other software not provided.   |
| Can Load Different DBDATA Files?=No        | This provides the facility to change the dbdata.dta file from within the application                   |
| DBDATA Path=C:\WIN314\dbdata.dta           | This details the location of the dbdata.dta file                                                       |
| Alter INI File?=Yes                        | This enables the user to access and alter the configuration file from within the application           |

| [Menu]                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PrintLarge=Yes                | This defines whether the network is enlarged to fit the printed sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PrintKey=Yes                  | This defines whether the key for the network is displayed on the printed sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PrintColumn=Yes               | This defines whether the results are displayed in a column on the left hand side of the sheet or as seen on the screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VoltDropByNodes=Yes           | This defines whether by default volt drops are shown by the nodes on the results screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FullNodeDetails=Yes           | This defines whether by default full node details are given with the results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VoltDropByNodesPrinter=Yes    | This defines whether by default volt drops are shown by the nodes on the printed results sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ShowCableDataOnTheDiagram=Yes | This defines whether by default cable data is shown on the results diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ShowCableDataOnThePrinter=Yes | This defines whether by default cable data is shown on the printed results diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [Urban Defaults]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fuse_Flag=Yes                 | This defines whether the fuse flag is checked as<br>default. If it is, then WinDebut checks whether<br>there is a fusing override at the first node out<br>from the substation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fuse_val=1.05                 | This is the safety margin used fro fuse ratings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Volt_drop0=4.79               | This is the maximum day volt drop in %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Volt_drop1=4.79<br>SRIGNOR=0  | This is the maximum night volt drop in %<br>This option allows service cables to be discounted<br>from Debut calculations. In the rural/urban<br>defaults there are three ignore check boxes.<br>If all three are to be taken into consideration,<br>then none will be checked and SRIGNOR=0,<br>If Voltage drop across services is to be ignored<br>only then SRIGNOR=1<br>If Loop resistance of services is to be ignored only<br>then SRIGNOR=2<br>If Fault resistance/reactance of services is to be<br>ignored only then SRIGNOR=4<br>If Voltage drop across services and Loop<br>resistance of services is to be ignored then<br>SRIGNOR=3<br>If Voltage drop across services and Fault<br>resistance/reactance of services is to be ignored<br>then SRIGNOR=5<br>If Loop resistance of services and Fault<br>resistance/reactance of services is to be ignored<br>then SRIGNOR=6<br>If Voltage drop across services, Loop resistance of<br>services and Fault resistance/reactance of<br>services and Fault resistance of<br>services and Fault resistance/reactance of |
| Loop_Resistance_Flag=Yes      | services is to be ignored then SRIGNOR=7<br>This defines whether the loop resistance flag is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               | checked by default when 'no services' is selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Loop_Resistance=135              | This defines the default value for loop resistance when 'no services' is selected (As per ST:SD5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loads_Only=No                    | This defines whether load only analysis takes place i.e. only transformer size and loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DP0=4.79                         | Maximum day volt drop in %when no services are modelled (As per ST:SD5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DP1=4.79                         | Maximum night volt drop in %when no services are modelled (As per ST:SD5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DP2=5                            | This is the value at which the increments of tapering will be carried out i.e. tapering will be 70m or 75m                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DP3=945                          | Cost of losses £/kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RUC=10                           | The minimum economic % of cable used during tapering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RUL=50                           | This is the minimum length of cable (m) used during tapering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FaultLevelVoltage=250            | This is the voltage used to calculate the fault levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DesignVoltage=240                | This is the nominal voltage used in the load flow studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Loop_Resistance_Flag Service=Yes | This defines whether the loop resistance flag is checked by default when 'services' is selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Loop_Resistance Service=220      | This defines the default value for loop resistance when 'services' is selected (As per ST:SD5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DP0 Service=5.75                 | This is the maximum day volt drop in % when services are modelled (As per ST:SD5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DP1 Service=5.75                 | This is the maximum night volt drop in % when services are modelled (As per ST:SD5K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [Rural Defaults]                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fuse_Flag=Yes                    | This defines whether the fuse flag is checked as<br>default. If it is, then WinDebut checks whether<br>there is a fusing override at the first node out<br>from the substation                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fuse_val=1.05                    | This is the safety margin used fro fuse ratings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Volt_drop0=4.79                  | This is the maximum day volt drop in %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Volt_drop1=4.79                  | This is the maximum night volt drop in %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRIGNOR=0                        | This option allows service cables to be discounted<br>from Debut calculations. In the rural/urban<br>defaults there are three ignore check boxes.<br>If all three are to be taken into consideration,<br>then none will be checked and SRIGNOR=0,<br>If Voltage drop across services is to be ignored<br>only then SRIGNOR=1<br>If Loop resistance of services is to be ignored only<br>then SRIGNOR=2<br>If Fault resistance/reactance of services is to be<br>ignored only then SRIGNOR=4<br>If Voltage drop across services and Loop<br>resistance of services is to be ignored then |

|                                  | SRIGNOR=3<br>If Voltage drop across services and Fault<br>resistance/reactance of services is to be ignored<br>then SRIGNOR=5<br>If Loop resistance of services and Fault<br>resistance/reactance of services is to be ignored<br>then SRIGNOR=6<br>If Voltage drop across services, Loop resistance of<br>services and Fault resistance/reactance of |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | services is to be ignored then SRIGNOR=7                                                                                                                                                                                                                                                                                                              |
| Loop_Resistance_Flag=Yes         | This defines whether the loop resistance flag is                                                                                                                                                                                                                                                                                                      |
|                                  | checked by default when 'no services' is selected                                                                                                                                                                                                                                                                                                     |
| Loop_Resistance=135              | This defines the default value for loop resistance                                                                                                                                                                                                                                                                                                    |
|                                  | when 'no services' is selected (As per ST:SD5K)                                                                                                                                                                                                                                                                                                       |
| Loads_Only=No                    | This defines whether load only analysis takes                                                                                                                                                                                                                                                                                                         |
|                                  | place i.e. only transformer size and loads                                                                                                                                                                                                                                                                                                            |
| DP0=4.79                         | Maximum day volt drop in %when no services are                                                                                                                                                                                                                                                                                                        |
|                                  | modelled (As per ST:SD5K)                                                                                                                                                                                                                                                                                                                             |
| DP1=4.79                         | Maximum night volt drop in %when no services                                                                                                                                                                                                                                                                                                          |
|                                  | are modelled (As per ST:SD5K)                                                                                                                                                                                                                                                                                                                         |
| DP2=5                            | This is the value at which the increments of                                                                                                                                                                                                                                                                                                          |
|                                  | tapering will be carried out i.e. tapering will be                                                                                                                                                                                                                                                                                                    |
|                                  | 70m or 75m                                                                                                                                                                                                                                                                                                                                            |
| DP3=945                          | Cost of losses £/kW                                                                                                                                                                                                                                                                                                                                   |
| RUC=10                           | The minimum economic % of cable used during                                                                                                                                                                                                                                                                                                           |
|                                  | tapering                                                                                                                                                                                                                                                                                                                                              |
| RUL=50                           | This is the minimum length of cable (m) used                                                                                                                                                                                                                                                                                                          |
|                                  | during tapering                                                                                                                                                                                                                                                                                                                                       |
| FaultLevelVoltage=250            | This is the voltage used to calculate the fault                                                                                                                                                                                                                                                                                                       |
|                                  | levels                                                                                                                                                                                                                                                                                                                                                |
| DesignVoltage=240                | This is the nominal voltage used in the load flow                                                                                                                                                                                                                                                                                                     |
|                                  | studies                                                                                                                                                                                                                                                                                                                                               |
| Loop Resistance Flag Service=Yes | This defines whether the loop resistance flag is                                                                                                                                                                                                                                                                                                      |
|                                  | checked by default when 'services' is selected                                                                                                                                                                                                                                                                                                        |
| Loop Resistance Service=220      | This defines the default value for loop resistance                                                                                                                                                                                                                                                                                                    |
|                                  | when 'services' is selected (As per ST:SD5K)                                                                                                                                                                                                                                                                                                          |
| DP0 Service=5.75                 | This is the maximum day volt drop in % when                                                                                                                                                                                                                                                                                                           |
|                                  | services are modelled (As per ST:SD5K)                                                                                                                                                                                                                                                                                                                |
| DP1 Service=5.75                 | This is the maximum night volt drop in % when                                                                                                                                                                                                                                                                                                         |
|                                  | services are modelled (As per ST:SD5K)                                                                                                                                                                                                                                                                                                                |
| [Customise]                      |                                                                                                                                                                                                                                                                                                                                                       |
| LisaKerfordKey=No                | IGNORE                                                                                                                                                                                                                                                                                                                                                |
| AllowCopyToClipboard=Yes         | This defines whether you can copy diagram and                                                                                                                                                                                                                                                                                                         |
|                                  | results for use in other applications                                                                                                                                                                                                                                                                                                                 |
| CopyToClipboardSizeInPercent=50  | This defines the size of the copy to be made                                                                                                                                                                                                                                                                                                          |
| Display Interconnector Cables=No | This defines if Inter-connector cables are                                                                                                                                                                                                                                                                                                            |
|                                  | displayed                                                                                                                                                                                                                                                                                                                                             |
| ShowConsumerTypesDefBtn=No       | Show the consumer types button on the                                                                                                                                                                                                                                                                                                                 |
| ·····                            | consumer editor screen to load the consumer                                                                                                                                                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                                                                                                                                                       |

|                         | types specification screen                         |
|-------------------------|----------------------------------------------------|
| ShowCableTypesDefBtn=No | Show the cable types button on the cables editor   |
|                         | screen to load the cable groups editor screen      |
| [File Viewer Menu]      |                                                    |
| Show Line Numbers=Yes   | If yes, this will show line numbers on the output  |
|                         | file                                               |
| Print Landscape=Yes     | This defines whether the output file is printed in |
|                         | landscape or portrait                              |
| [Debut]                 |                                                    |
| RUN_DEFUT_FILE_COPY=    |                                                    |
| TIME_OUT_MS=20000       |                                                    |
| TIME_OUT_INFINITE=No    |                                                    |

#### APPENDIX D

#### WINDEBUT.INI FILE:

; ;WinDebut.ini - setup file for windebut [Information] ;paths should be left blank if relevant files are in the WinDebut ;directory, or a path may be given e.g. "c:\debut", "d:\windebut\datafile" ;NB no "\" at end. DebutPath= CablePath= ConsumerPath= TransformerPath= WDGroupsPath= ; ; Above paths are for Debut and its data file, wdcable.dat, wdcnstyp.dat ; and wdxfrmr.dat respectively. [Defaults] ; ; Global data defaults Phase\_Angle=120 No\_of\_Phases=3 PrintDefault=Yes PrintConsumers=No PrintColumn132=Yes IECSIZE=Yes FULLLOSS=Yes XREG=Yes DMOT=8 NMOT=4 [MotorStartCurrentMultipliers] StarDelta = 3.5 AutoTransformer = 3.5 ElectSoftStart = 2.5 VariableSpeed = 2.5 SlipRingRR = 1.5 SinglePhCapStart = 4.5 SinglePhSeriesParallel = 2.5 [Results] Show Cost=No DR0Left=264 DR0Top=1035 DR1Left=46 DR1Top=192 DR2Left=18.8 DR2Top=283.9333 DR3Left=538 DR3Top=63 DR4Left=44

DR4Top=71 DR5Left=94.73333 DR5Top=18.86667 DR6Left=455.5333 DR6Top=45.4 [WinDebut] OutputDirectory=Y:\POLICY\SD POLICY\SD5 LV DESIGN\SD5B NetworkDirectory=Y:\Policy\SD policy\SD5\_LV\_Design PrivilegedUser=zYes Maximised=Yes MainLeft=91 MainTop=102 MainWidth=843 MainHeight=565 ShowNodeEditor=Yes ShowDisclaimerScreen=Yes Editor Font Size=10 OptionsEditableByPrivilegedUserOnly=YES OutputForEGD=Yes LoadOtherDBDataFiles=No DBDATA Path= SaveGlobalDefaults=No SaveLocalDefaults=Yes DefaultNodeSize=1 ShowCableDetails=YES ShowNodeDetails=YES UserSelectIcons=YES ConsumerTypeComments=YES ShowEGDGraphs=NO ShowLoopImpedance =No ShowVoltagePercent=Yes ShowCableDistributed=No UsePhasesForGeneration=No ShowOneDistributedObject=Yes LinkEGDVoltageToDesignVoltage=Yes ShowResultsTable=Yes ShowResultsTableEGD=Yes ShowFactorForGenMinLoad=Yes VoltDropAcrossTXForGen=Yes ShowEGDLoadDefault=Yes

[GISImport] CheckForGEOConsolidation=Yes

[UserSettings] AllowCableGroupChanges=Yes AllowServiceCableChanges=No AllowTransformerSelectionChanges=No AllowConsumerTypeChanges=Yes

[Menu] PrintLarge=Yes PrintKey=Yes PrintColumn=Yes

VoltDropByNodes=Yes FullNodeDetails=Yes ShowCableDataOnTheDiagram=Yes ShowDetailedConsumerToolTips=Yes ComponentLabelSize=4 [Urban Settings] Fuse\_Flag=Yes Fuse\_val=1.05 Volt\_drop0=4.79 Volt drop1=4.79 SRIGNOR=0 Loop\_Resistance\_Flag=Yes Loop Resistance=135 Loads\_Only=No DP0=4.79 DP1=4.79 DP2=5 DP3=945 RUC=10 RUL=50 FaultLevelVoltage=250 DesignVoltage=240 Loop\_Resistance\_Flag Service=Yes Loop Resistance Service=220 DP0 Service=5.75 DP1 Service=5.75 [Rural Settings] Fuse Flag=Yes Fuse\_val=1.05 Volt\_drop0=4.79 Volt drop1=4.79 SRIGNOR=0 Loop Resistance Flag=Yes Loop Resistance=135 Loads\_Only=No DP0=4.79 DP1=4.79 DP2=5 DP3=945 RUC=10 RUL=50 FaultLevelVoltage=250 DesignVoltage=240 Loop\_Resistance\_Flag Service=Yes Loop\_Resistance Service=220 DP0 Service=5.75 DP1 Service=5.75 [Customise] AllowCopyToClipboard=Yes CopyToClipboardSizeInPercent=50 Display Interconnector Cables=No

ST: SD7A/9 January 2020

ShowConsumerTypesDefBtn=No ShowCableTypesDefBtn=No [File Viewer Menu] Show Line Numbers=Yes Print Landscape=Yes

[Debut] RUN\_DEBUT\_FILE\_COPY= TIME\_OUT\_MS=20000 TIME\_OUT\_INFINITE=No

[Transformer] Path=

## DBDCONSU.INI FILE:

!\*ONE **ELEXON 1 Unrestricted Domestic** !\*TWO ELEXON 2 Domestic Economy Seven - for use when off peak electric heating is present **!**\*THREE **ELEXON 3 Unrestricted Non-Domestic** !\*FOUR ELEXON 4 Non-Domestic Economy 7 - for use when off peak electric heating is present !\*FIVE ELEXON 5 Non-Domestic, MD - Load Factor<20% !\*SIX ELEXON 6 Non-Domestic, MD - Load Factor 20-30% **!\*SEVEN** ELEXON 7 Non-Domestic, MD - Load Factor 30-40% !\*EIGHT ELEXON 8 Non-Domestic, MD - Load Factor >40% **!\*BEVREX** Electric Nation 7kW Full Electric Vehicle or Range Extender !\*PHEV Electric Nation 3.6kW Plug in Hybrid **!\*HOTPUB** HOTEL or PUB !\*CHURCH CHURCH with off peak electric heating

# TRFRUPD.INI:

The Trfrupd.ini configuration file points WinDebut to where the Transformer search database file is held.

# C:\PROGRAM FILES\WINDEBUT\DEBUT\_TF.MDB

(Where Program Files\Windebut is the WinDebut default directory on C: drive)

# **APPENDIX G**

#### WDGROUPS.DAT FILE:

```
100,1
"120 Degrees"
3
1
1.05
"<FaultLevel>250"
"<DesignVoltage>240"
4.79,4.79
0
1
135
#FALSE#
4.79,4.79,100,945
10
50
#FALSE#
#FALSE#
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
```

ST: SD7A/9 January 2020

```
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
"END OF GLOBAL DATA"
1
"ONE"
"<ConsumerName>ONE_3600_0"
"1._ONE_3600_0"
3600,0
0,0
0,0
0,0
0,0
0,0
```

2 "TWO" "<ConsumerName>TWO\_3500\_8000" .... "2.TWO\_3600\_8000" 3500,8000 0,0 0,0 0,0 0,0 0,0 3 "THREE" "<ConsumerName>THREE\_20000\_0" .... "3.THREE\_20000\_0" 20000,0 0,0 0,0 0,0 0,0 0,0 4 "FOUR" "<ConsumerName>FOUR\_20000\_15000" .... "4.FOUR\_20000\_15000" 20000,15000 0,0 0,0 0,0 0,0 0,0 5 "FIVE" "<ConsumerName>FIVE\_100\_0" "MDQ" "5.FIVE\_100\_0" 100000,0 0,0 0,0 0,0 0,0 0,0 6 "SIX" "<ConsumerName>SIX\_100\_0" "MDQ" "6.SIX\_100\_0" 100000,0 0,0

0,0 0,0 0,0 0,0 7 "SEVEN" "<ConsumerName>SEVEN\_100\_0" "MDQ" "7.SEVEN\_100\_0" 100000,0 0,0 0,0 0,0 0,0 0,0 8 "EIGHT" "<ConsumerName>EIGHT\_100\_0" "MDQ" "8.EIGHT\_100\_0" 100000,0 0,0 0,0 0,0 0,0 0,0 9 "BEVREX" "<ConsumerName>BEV\_REX" "MXD" "9.BEV\_REX" 7000,7000 0,0 0,0 0,0 0,0 0,0 10 "PHEV" "<ConsumerName>PHEV" "MXD" "10.PHEV" 3600,3600 0,0 0,0 0,0 0,0 0,0 11 "ONE" "<ConsumerName>15kW\_MD"

"MDQ" "11.ONE\_15\_0" 15000,0 0,0 0,0 0,0 0,0 0,0 12 "HOTPUB" "<ConsumerName>HOTEL\_PUB\_30000\_0" .... "12.HOTEL\_PUB\_30000\_0" 30000,0 0,0 0,0 0,0 0,0 0,0 13 "CHURCH" "<ConsumerName>CHURCH\_10000\_10000" .... "13.CHURCH\_10000\_10000" 10000,10000 0,0 0,0 0,0 0,0 0,0 "END OF CONSUMER TYPES" "Mains. 1" "WC 185 FS" "WC 300 FS" "Service 3ph, 2" "HYT 25 FS SRV" "HYT 35 FS SRV" "Service 1ph, 3" "HY 35 FS SRV" "HY 25 FS SRV" "END OF CABLE SELECTIONS" START OF THE TRANSFORMER GROUPS TOTAL TRANSFORMER GROUPS = 4 MAX NO. OF TRANSFORMERS PER GROUP = 10 GMT, 1 2 4 -32767 -32767 -32767 -32767 -32767 -32767 -32767 PMT 3 PH, 8 9 10 11 -32767 -32767 -32767 -32767 -32767 -32767 PMT 1 PH, 13 14 15 -32767 -32767 -32767 -32767 -32767 -32767 -32767 SPLIT, 27 28 -32767 -32767 -32767 -32767 -32767 -32767 -32767 -32767 END OF THE TRANSFORMER GROUPS START OF THE GLOBAL TRANSFORMER OPTIONS

IECSIZING = YES FULLLOSS = YES XREG = YESDMOT = 8 NMOT = 4END OF THE GLOBAL TRANSFORMER OPTIONS WinDebut Version=WinDebut V 3.1 PrintColumn132=Yes Network Type (0 Is Urban, 1 Is Rural)=1 Study Title=<Untitled Study> START OF THE DEBDAT CABLES Number of DEBDAT cables=112 DEBDAT cable 1=ABC 50, 2 0 DEBDAT cable 2=ABC 95, 2 0 DEBDAT cable 3=ABC 120, 2 0 DEBDAT cable 4=AL .007, 2 -1 DEBDAT cable 5=AL .0145, 2 -1 DEBDAT cable 6=AL .0225, 2 -1 DEBDAT cable 7=AL .04, 2 -1 DEBDAT cable 8=AL .06, 2 -1 DEBDAT cable 9=AL .1, 2 0 DEBDAT cable 10=AL .15, 2 0 DEBDAT cable 11=AL .2, 20 DEBDAT cable 12=AL .25, 20 DEBDAT cable 13=AL .3, 2 0 DEBDAT cable 14=AL .4, 20 DEBDAT cable 15=AL .5, 2 0 DEBDAT cable 16=AL 25, 2 -1 DEBDAT cable 17=AL 35, 2 -1 DEBDAT cable 18=AL 50, 2 0 DEBDAT cable 19=AL 70, 20 DEBDAT cable 20=AL 95, 20 DEBDAT cable 21=AL 120, 2 0 DEBDAT cable 22=AL 185, 2 0 DEBDAT cable 23=AL 300, 2 0 DEBDAT cable 24=AO .025, 2 0 DEBDAT cable 25=AO .05, 2 0 DEBDAT cable 26=AO .06, 2 0 DEBDAT cable 27=AO .075, 2 0 DEBDAT cable 28=AO .1, 20 DEBDAT cable 29=AO .15, 2 0 DEBDAT cable 30=AO 25, 20 DEBDAT cable 31=AO 50, 2 0 DEBDAT cable 32=AO 100, 2 0 DEBDAT cable 33=AO 150, 2 0 DEBDAT cable 34=CC 16, 2 -1 DEBDAT cable 35=CC 25, 2 -1 DEBDAT cable 36=CC 35, 2 -1 DEBDAT cable 37=CCT 16, 2 -1 DEBDAT cable 38=CCT 25, 2 -1 DEBDAT cable 39=CCT 35, 2 -1

DEBDAT cable 40=CO .007, 2 0 DEBDAT cable 41=CO .0225, 2 0 DEBDAT cable 42=CO .025, 2 0 DEBDAT cable 43=CO .05, 2 0 DEBDAT cable 44=CO .058, 2 0 DEBDAT cable 45=CO .06, 2 0 DEBDAT cable 46=CO .1, 2 0 DEBDAT cable 47=CO .15, 20 DEBDAT cable 48=CO 16, 2 0 DEBDAT cable 49=CO 25, 20 DEBDAT cable 50=CO 32, 20 DEBDAT cable 51=CO 70, 2 0 DEBDAT cable 52=CO 100, 2 0 DEBDAT cable 53=CS 70, 20 DEBDAT cable 54=CS 95, 2 0 DEBDAT cable 55=CS 120, 20 DEBDAT cable 56=CS 150, 2 0 DEBDAT cable 57=CS 185, 20 DEBDAT cable 58=CS 240, 2 0 DEBDAT cable 59=CS 300, 2 0 DEBDAT cable 60=CU .007, 2 -1 DEBDAT cable 61=CU .0145, 2 -1 DEBDAT cable 62=CU .0225, 2 -1 BEBDAT cable 63=CU .025, 2 -1 DEBDAT cable 64=CU .04, 2 -1 DEBDAT cable 65=CU .05, 2 -1 DEBDAT cable 66=CU .06, 2 0 DEBDAT cable 67=CU .1, 2 0 DEBDAT cable 68=CU .15, 2 0 DEBDAT cable 69=CU .2, 2 0 DEBDAT cable 70=CU .25, 2 0 DEBDAT cable 71=CU .3. 2 0 DEBDAT cable 72=CU .4, 2 0 DEBDAT cable 73=CU .5, 2 0 DEBDAT cable 74=CU .6, 2 0 DEBDAT cable 75=CU .75, 2 0 DEBDAT cable 76=CU 16, 2 -1 DEBDAT cable 77=CU 25, 2 -1 DEBDAT cable 78=CU 35, 2 -1 DEBDAT cable 79=CU 70, 2 0 DEBDAT cable 80=CU 95, 20 DEBDAT cable 81=CU 120, 2 0 DEBDAT cable 82=CU 185, 2 0 DEBDAT cable 83=CU 300, 2 0 DEBDAT cable 84=CU 400, 2 0 DEBDAT cable 85=HY 25, 2 -1 DEBDAT cable 86=HY 35, 2 -1 DEBDAT cable 87=HYT 25, 2 -1 DEBDAT cable 88=HYT 35, 2 -1 DEBDAT cable 89=SA 480, 2 0 DEBDAT cable 90=SA 600, 2 0

DEBDAT cable 91=SA 740, 20 DEBDAT cable 92=SA 960, 2 0 DEBDAT cable 93=SA 1200, 2 0 DEBDAT cable 94=SA 1480, 2 0 DEBDAT cable 95=SA 1800, 2 0 DEBDAT cable 96=SA 2220, 2 0 DEBDAT cable 97=SCC 16, 2 -1 DEBDAT cable 98=SCC 25, 2 -1 DEBDAT cable 99=SCC 35, 2 -1 DEBDAT cable 100=SCCT 25, 2 -1 DEBDAT cable 101=SCCT 35, 2 -1 DEBDAT cable 102=TR 70, 20 DEBDAT cable 103=TR 95, 2 0 DEBDAT cable 104=TR 120, 20 DEBDAT cable 105=TR 150, 2 0 DEBDAT cable 106=TR 185, 2 0 DEBDAT cable 107=TR 240, 2 0 DEBDAT cable 108=TR 300, 2 0 DEBDAT cable 109=WC 35, 2 -1 DEBDAT cable 110=WC 95, 2 0 DEBDAT cable 111=WC 185, 2 0 DEBDAT cable 112=WC 300, 2 0 END OF THE DEBDAT CABLES Service cables, Use loop resistance=YES Service cables, loop resistance=220 Service cables, max day volt drop=5.75 Service cables, max night volt drop=5.75 <ICONSIZE>1

#### **EDGSETUP.DAT FILE:**

CONSUMER\_POWER\_FACTORS 1 DEFAULT 0.97 **GENERATOR\_TYPES 5** Wind 30 111111111111 111111111111 111111111111 111111111111 0000000000000 Hydro 30 111111111111 111111111111 111111111111 1111111111111 000000000000 CHP 3 0 111111111111 111111111111 111111111111 111111111111 0000000000000 PV 2.4 0 0000000000000040.080.11 0.15 0.19 0.26 0.33 0.46 0.58 0.7 0.81 0.88 0.95 0.98 1 0.99 0.97 0.93 0.89 0.81 0.74 0.64 0.53 0.42 0.31 0.25 0.19  $0.15\ 0.11\ 0.07\ 0.04\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ 0000000000000 PV(Domstc) 2.4 0  $0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0.04\ 0.08\ 0.11$ 0.15 0.19 0.26 0.33 0.46 0.58 0.65 0.7 0.75 0.77 0.79 0.8 0.8 0.79 0.78 0.76 0.73 0.69 0.63 0.53 0.42 0.31 0.25 0.19  $0.15\ 0.11\ 0.07\ 0.04\ 0\ 0\ 0\ 0\ 0\ 0\ 0$ 0000000000000 VOLTAGE DROP 3.45 3.45 System\_Voltage 240 GenLoadFactor 0.4

#### **APPENDIX I**

#### SUPERSEDED DOCUMENTATION

This document supersedes ST: SD7A/8 dated July 2019 which has now been withdrawn.

#### **APPENDIX J**

# **RECORD OF COMMENT DURING CONSULTATION**

Update of profile information only, no formal consultation undertaken.

#### **APPENDIX K**

# ANCILLARY DOCUMENTS

| ST: SD5A | Design of Low Voltage Domestic Connections                                                         |
|----------|----------------------------------------------------------------------------------------------------|
| SD: SD5K | Use of WinDebut Software                                                                           |
| ST: SD5N | Relating the use of WinDebut Software for assessing Motor and Welder Voltage Disturbance (Flicker) |
| ST: SD5R | Loop Impedances                                                                                    |

EA Technology Report - DEBUT User Guide (for version 3.10) Report No: 4490 Project No: TT081 June 1998

#### APPENDIX L

# **KEY WORDS**

Design, WinDebut, Non-domestic, Domestic, New Connection, New Development, Load Factor, Estimation, Electric Nation.